Guía de Apoyo al Desarrollo de Diagnósticos Energéticos para Instituciones de Educación Superior (IES)
La Agencia Chilena de Eficiencia Energética (AChEE) es una fundación de derecho privado, sin fines de lucro. Es un organismo autónomo, técnico y ejecutor de políticas públicas en torno a la Eficiencia Energética, que recibe financiamiento público y privado. Actualmente está operando con recursos obtenidos a través del Convenio de Transferencia con la Subsecretaría de Energía, perteneciente al Ministerio de Energía, y al Convenio de Financiamiento establecido con el Banco Interamericano de Desarrollo (BID), agencia implementadora del Fondo proveniente del Global Environment.

Estimadas y estimados,

La Eficiencia Energética puede ser considerada una fuente energética en todos los espacios y sectores, más en aquellos que tienen a la base recursos limitados y necesidades crecientes, como los son las instituciones o establecimientos educacionales, y lograr los beneficios ambientales, económicos y culturales pueden alcanzarse con esfuerzos menores de majora.

Sin perjuicio de lo cual, como en todo proceso de mejora la información de base es fundamental e irreemplazable para que la programación y la toma de decisiones tenga el mayor sustento e impacto alcanzable.

En este sentido, mejorar el desempeño energético de cualquier institución educativa, requiere la definición de un alcance preciso que permita focalizar los esfuerzos y recursos y junto con ello, realizar de un diagnóstico lo más acabado posible que permita definir las metas, los plazos y los logros esperados con un grado de certidumbre.

Esta guía tiene como objetivo colaborar en esta tarea, describiendo los aspectos, conceptos, procedimientos y proponiendo algunos ejercicios aplicables, que permita facilitar el diseño e implementación de medidas para el uso eficiente de la energía en las instituciones de educación superior del país.

Agencia Chilena de Eficiencia Energética
Índice

Estructura de la guía.............................................................. 08

1. Introducción ........................................................................ 13
   1.1 Situación energética de las Instituciones de Educación Superior (IES) ............................................. 14
   1.1.1 Fuentes de energía y principales usos ......................................................................................... 15
   1.1.2 Distribución de consumos energéticos ....................................................................................... 15

2. Primeros pasos del diagnóstico energético .................................................. 25
   2.1 ¿Qué es un diagnóstico energético? .............................................................................................. 15
   2.2 ¿Por dónde empezar? .................................................................................................................... 15
   2.3 ¿Quién me puede ayudar? ............................................................................................................. 18
   2.4 Preparación de la visita ................................................................................................................ 18
   2.5 Referencias .................................................................................................................................... 18

3. Fase I: Levantamiento de datos .............................................................. 20
   3.1 Planificación del levantamiento de datos ..................................................................................... 20
   3.2 Registro de datos de iluminación .................................................................................................. 21
   3.3 Registro de datos de climatización ................................................................................................. 24
   3.4 Registro de datos de Agua Caliente Sanitaria (ACS) ..................................................................... 32
   3.5 Registro de datos de la envolvente térmica .................................................................................... 34
   3.6 Registro de datos de los equipos .................................................................................................... 37
   3.7 Medición de parámetros ................................................................................................................. 37
   3.8 Referencias ..................................................................................................................................... 37

4. Fase II: Contabilidad energética ................................................................ 40
   4.1 Conceptos básicos .......................................................................................................................... 40
   4.2 Análisis de suministros energéticos ............................................................................................... 40
   4.3 Elaboración del balance energético ............................................................................................... 48
    4.3.1 Conceptos básicos .................................................................................................................... 48
   4.3.2 Tipos de balances energéticos .................................................................................................... 50
   4.4 Establecimiento de la línea base ................................................................................................... 57
   4.5 Referencias ..................................................................................................................................... 57
5. Fase III: Identificación y cálculo de Medidas de Mejora de Eficiencia Energética (MMEE) ......................................................... 62
5.1 Selección de MMEE  ........................................................................................................................................................................... 62
5.2 Cálculo del desempeño y el ahorro energético ..................................................................................................................................... 67
5.3 MMEE en iluminación ........................................................................................................................................................................... 68
5.3.1 Conceptos básicos ........................................................................................................................................................................... 68
5.3.2 Descripción de las MMEE en iluminación ........................................................................................................................................ 69
5.3.3 Situación en el sector de las Instituciones de educación Superior (IES) .......................................................................................... 73
5.4 MMEE en sistemas de climatización y ACS ......................................................................................................................................... 77
5.4.1 Conceptos básicos ........................................................................................................................................................................... 77
5.4.2 Descripción de las MMEE en climatización y ACS .......................................................................................................................... 77
5.4.3 Situación en el sector de las Instituciones de Educación Superior (IES) .......................................................................................... 85
5.5 MMEE en sistemas de edificación .................................................................................................................................................... 89
5.5.1 Conceptos básicos ........................................................................................................................................................................... 89
5.5.2 Descripción de las MMEE en edificación ........................................................................................................................................ 89
5.5.3 Situación en el sector de las Instituciones de Educación Superior (IES) .......................................................................................... 95
5.6 MMEE en equipos ................................................................................................................................................................................ 98
5.6.1 Conceptos básicos ........................................................................................................................................................................... 98
5.6.2 Descripción de las MMEE en equipos ........................................................................................................................................ 98
5.6.3 Situación en el sector de las Instituciones de Educación Superior (IES) .......................................................................................... 102
5.7 Metodología de Medida y Verificación (M&V) de MMEE .................................................................................................................. 105
5.7.1 Ejemplo de plan de M&V sobre MMEE en un sistema de generación de calor ...................................................................................... 106
5.8 Referencias ......................................................................................................................................................................................... 106
6. Gestión de la energía y mejora continua .............................................................................................................................................. 111
6.1 Indicadores de seguimiento energético ........................................................................................................................................... 111
6.2 Sistemas de Gestión de la Energía (SGE) según la norma ISO 50001 .................................................................................................. 113
6.2.1 Beneficios de la implementación de un SGE ......................................................................................................................................... 114
6.2.2 Metodología de implementación de un SGE ......................................................................................................................................... 117
6.3 Referencias ......................................................................................................................................................................................... 117

7. Anexos ............................................................................................................................................................................................................. 119
7.1 Anexo I: Fichas de levantamiento de datos ................................................................................................................................. 119
7.2 Anexo II: Equipos de medición .......................................................................................................................................................... 127
7.2.1 Analizador de redes ...................................................................................................................................................................... 127
7.2.2 Registrador de temperatura ............................................................................................................................................................. 128
7.2.3 Cámara termográfica ...................................................................................................................................................................... 129
7.2.4 Analizador de gases ...................................................................................................................................................................... 131
7.2.5 Registrador de ocupación ............................................................................................................................................................. 132
7.2.6 Termoflujómetro ............................................................................................................................................................................. 134
7.2.7 Luxómetro ....................................................................................................................................................................................... 134
7.2.8 Otros equipos de medición ........................................................................................................................................................... 135
7.3 Anexo III: Glosario ............................................................................................................................................................................... 136

Índice de Tablas

Tabla 1. Ejemplo de ordenación de la información ............................................................................................................................. 17
Tabla 2. Ejemplo de estimación de horas de uso de los recintos ........................................................................................................ 21
Tabla 3. Tipos de ampolletas ................................................................................................................................................................. 22
Tabla 4. Ejemplo de ficha de levantamiento de datos de iluminación .................................................................................................. 23
Tabla 5. Tipos de sistemas de generación de calor ................................................................................................................................ 24
Tabla 6. Ejemplo de ficha de levantamiento de datos de una caldera .............................................................................................. 25
Tabla 7. Ejemplo de levantamiento de datos de una estufa .................................................................................................................. 26
Tabla 8. Tipos de generación de frío ...................................................................................................................................................... 26
Tabla 9. Ficha de levantamiento de datos de un chiller .......................................................................................................................... 27
Tabla 10. Tipos de sistemas de distribución .......................................................................................................................................... 28
Tabla 11. Ejemplo ficha de levantamiento de datos de una Unidad Manejadora de Aire ........................................................................... 29
Tabla 12. Ficha de levantamiento de datos de una bomba de agua ..................................................................................................... 30
Tabla 13. Tipos de elementos terminales .............................................................................................................................................. 31
Tabla 14. Ejemplo de ficha de levantamiento de datos de elementos terminales ................................................................................. 32
Tabla 15. Tipos de sistemas de Agua Caliente Sanitaria .......................................................................................................................... 32
Tabla 16. Ejemplo ficha de levantamiento de datos termo acumulador de Agua Caliente Sanitaria .......................................................... 33
Tabla 17. Principales elementos de la envolvente térmica ....................................................................................................................... 35
Tabla 18. Ejemplo de ficha de levantamiento de datos de la envolvente térmica .................................................................................... 35
Tabla 19. Ejemplo de registro de orientaciones de los recintos ............................................................................................................ 37
Tabla 20. Ejemplo de ficha de levantamiento de datos de equipos ....................................................................................................... 37
Tabla 21. Equipos y parámetros de medición ............................................................................................................................................ 38
Tabla 22. Rangos recomendados para parámetros de medición ............................................................................................................. 38
Tabla 23. Ejemplo de datos obtenidos con un luxómetro comparado con la tabla N° 11.25 (Illuminancias mínimas para locales educacionales) ................................................................................................................................. 39
Tabla 24. Ejemplo de datos de consumo de electricidad obtenidos de las boletas .................................................................................. 42
Tabla 25. Ejemplo de balance de electricidad por usos ............................................................................................................................ 51
Tabla 26. Ejemplo de determinación del desempeño energético por comparación con la línea base .......................................................... 61
Tabla 27. Listado de Medidas de Mejora de Eficiencia Energética de iluminación interior ........................................................................ 64
Tabla 28. Listado de Medidas de Mejora de Eficiencia Energética de climatización y Agua Cliente Sanitaria ................................................. 69
Tabla 29. Listado de Medidas de Mejora de Eficiencia Energética de edificación y equipos ..................................................................... 66
Tabla 30. Indicadores de desempeño energético ...................................................................................................................................... 112
Tabla 31. Ficha de levantamiento de datos de iluminación .......................................................................................................................... 120
Tabla 32. Ficha de levantamiento de datos de una caldera ....................................................................................................................... 121
Tabla 33. Ficha de levantamiento de datos de una estufa ........................................................................................................................... 121
Tabla 34. Ficha de levantamiento de datos de un chiller ............................................................................................................................. 122
Tabla 35. Ficha de levantamiento de datos de una bomba de impulsión/returno y recirculación ................................................................. 122
Tabla 36. Ficha de levantamiento de datos de una Unidad Manejadora de Aire .......................................................................................... 123
Tabla 37. Ficha de levantamiento de datos de los elementos terminales .............................................................................................. 123
Índice de Figuras

Figura 1. Fases de un diagnóstico energético.......................................................... 15
Figura 2. Ejemplo de plano del recinto.................................................................. 16
Figura 3. Ejemplo de plano de designación de orientaciones.................................. 36
Figura 4. Ejemplo de boleta de consumo eléctrico.................................................. 41
Figura 5. Pérdidas y ganancias de calor y refrigeración en un edificio................... 50
Figura 6. Clasificación de MMEE en función del costo de implementación........... 63
Figura 7. MMEE en iluminación: medidas que implican un recambio tecnológico... 69
Figura 8. MMEE en iluminación: medidas de gestión ............................................. 70
Figura 9. MMEE en iluminación: adopción de hábitos de uso responsable.............. 71
Figura 10. MMEE en climatización: medidas de implican un recambio tecnológico. 77
Figura 11. MMEE en climatización: medidas de gestión......................................... 79
Figura 12. MMEE en climatización: adopción de hábitos de uso responsable........... 81
Figura 13. MMEE en ACS: medidas que requieren recambio tecnológico.............. 83
Figura 14. MMEE en ACS: medidas de gestión...................................................... 84
Figura 15. MMEE en ACS: adopción de hábitos de uso responsable....................... 85
Figura 16. MMEE de la envolvente: opciones de reducción de pérdidas................. 90
Figura 17. MMEE de reducción de pérdidas por conducción.................................... 90
Figura 18. MMEE de reducción de infiltraciones.................................................... 91
Figura 19. MMEE de reducción de radiación......................................................... 91
Figura 20. MMEE en edificación: adopción de hábitos de uso responsable............... 91
Figura 21. MMEE en equipos: medidas que implican un recambio tecnológico...... 98
Figura 22. MMEE en equipos: medidas de gestión............................................... 99
Figura 23. Ejemplo de etiqueta de eficiencia energética....................................... 101
Figura 24. MMEE en equipos: adopción de hábitos de uso responsable............... 101
Figura 25. Ciclo de mejoramiento continuo del sistema de gestión de la energía.... 113
Figura 26. Ejemplo de reducción de emisiones de GEI tras la implementación de la norma ISO 50001........................................ 116
Figura 27. Requerimientos de la norma ISO 50001 de acuerdo al ciclo de mejoramiento continuo.................................................. 117
Figura 28. Esquema del proceso de revisión energética en una organización......... 118

Índice de Gráficos

Gráfico 1. Distribución media de fuentes energéticas empleadas en IES.................. 13
Gráfico 2. Distribución media de usos energéticos empleados en IES..................... 14
Gráfico 3. Ejemplo de curva de consumo eléctrico anual....................................... 43
Gráfico 4. Ejemplo de balance energético por suministros.................................. 51
Gráfico 5. Ejemplo de balance energético total por usos.................................... 52
Gráfico 6. Reducción de costos tras la implementación de un SGE......................... 115
Gráfico 7. Ejemplo de resultado gráfico obtenido con un analizador de redes en una oficina.......................................................... 129
Gráfico 8. Ejemplo de resultado gráfico obtenido con un registrador de temperatura.......................................................... 130
Gráfico 9. Ejemplo de resultado gráfico obtenido con un registrador de ocupación.......................................................... 135
## Estructura de la guía

La Guía de Apoyo al Desarrollo de Diagnósticos Energéticos para Instituciones de Educación Superior (IES) se estructura en 6 capítulos, cada uno con un objetivo específico:

<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>OBJETIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1. Introducción</strong></td>
<td>Introducir la situación energética de las Instituciones de Educación Superior (IES).</td>
</tr>
<tr>
<td><strong>2. Primeros pasos del diagnóstico energético</strong></td>
<td>Obtener las pautas y acciones fundamentales para la realización exitosa de un diagnóstico energético; desde la recopilación previa de información hasta la obtención de datos “en terreno”.</td>
</tr>
<tr>
<td><strong>3. Fase I. Levantamiento de datos</strong></td>
<td>Realizar el catastro de toda la información necesaria para conocer qué hay en la instalación y cómo funciona.</td>
</tr>
<tr>
<td><strong>4. Fase II. Contabilidad energética</strong></td>
<td>Analizar el comportamiento de los consumos de los establecimientos educacionales, supervisar el flujo de energía e identificar debilidades para luego seleccionar medidas de mejora adecuadas.</td>
</tr>
<tr>
<td><strong>5. Fase III. Identificación y cálculo de Medidas de Mejora de Eficiencia Energética (MMEE)</strong></td>
<td>Identificar las principales MMEE para iluminación, climatización, Agua Caliente Sanitaria (ACS), edificación y equipos. Asimismo, calcular la mejora del desempeño energético y el ahorro de costos derivado de la implementación de las MMEE identificadas.</td>
</tr>
<tr>
<td><strong>6. Gestión de la energía y mejora continua</strong></td>
<td>Implementar nuevas oportunidades de mejora, relacionadas con la gestión de la energía, definiendo los indicadores más adecuados para el seguimiento de los consumos energéticos. También se presentarán los beneficios de un Sistema de Gestión de la Energía (SGE) según la norma ISO 50001 y cómo un diagnóstico energético puede ser empleado como punto de partida en la implementación de un SGE.</td>
</tr>
</tbody>
</table>
1. Introducción

1.1 Situación energética de las Instituciones de Educación Superior (IES)

El sector de IES destaca por su heterogeneidad. En primer lugar se debe destacar la diversidad climática a lo largo de la geografía chilena. Los edificios que dan servicio a las IES tienen necesidades energéticas de climatización según la zona del país en que se sitúan.

Desde el punto de vista arquitectónico existen edificios de diversas épocas y calidades (desde edificios históricos de estilo colonial a construcciones de reciente ejecución). Si se observa el aspecto urbanístico, se pueden encontrar edificios integrados en la trama urbana o bajo el formato de “campus”.

Las instalaciones técnicas, salvo los sistemas de iluminación, tampoco son uniformes, ya que un porcentaje no despreciable de edificios ni siquiera dispone de un sistema formal de calefacción, frente a edificios con sistemas avanzados de climatización.

El uso deportivo es un importante consumo de energía, como así ocurre en las IES que están dotadas de piscina temperada.

Finalmente, los usos entre las facultades humanísticas y las científicas son muy diferentes, destacando sobre todo la presencia de laboratorios con diferentes propósitos.

1.1.1 Fuentes de energía y principales usos

Las fuentes de energía utilizadas por las IES son fundamentalmente: electricidad, gas natural, gas licuado y diesel. Sin embargo, en las Regiones de la Araucanía y de los Ríos se dan consumos de dendroenergía en forma de leña o pellets.

1.1.2 Distribución de consumos energéticos

Las siguientes categorías representan los usos a los que se destina el consumo de energía:

- Calefacción.
- Refrigeración.
- Agua Caliente Sanitaria (ACS).
- Iluminación interior.
- Iluminación exterior.
- Equipos informáticos.
- Otros.

A éstos se debe agregar que algunos centros de IES hacen uso de piscinas temperadas, vehículos institucionales y laboratorios.
Primeros pasos del diagnóstico energético

Un diagnóstico energético es el estudio y análisis del uso de la energía en una instalación con el fin de identificar oportunidades de ahorro energético. Puede ser de gran utilidad en una IES para detectar áreas de mejora.
2. Primeros pasos del diagnóstico energético

**OBJETIVO**
Obtener las pautas y acciones fundamentales para la realización de un diagnóstico energético, desde la recopilación previa de información hasta la obtención de datos "en terreno".

2.1 ¿Qué es un diagnóstico energético?
Un diagnóstico energético es el estudio y análisis del uso de la energía en un edificio, proceso o sistema cuyo objetivo principal es la identificación de oportunidades de ahorro de energía en las instalaciones.

Un diagnóstico energético se realiza en tres fases como muestra el esquema:

- **FASE I. Levantamiento de datos**
  - Información sobre las instalaciones: resulta muy conveniente poder contar con todo tipo de documentación relacionada con las instalaciones y su funcionamiento energético. Se deben recopilar:
    - Planos del establecimiento.
    - Diagramas unilineales.
    - Boletas de los suministros energéticos de al menos los últimos 12 meses.
    - Horarios de funcionamiento.
    - Otros

Si no se dispone de un plano, se puede elaborar un esquema sencillo donde aparecerán los diferentes recintos. Esto permitirá tener una visión más global de la disposición de las salas, así como calcular los metros cuadrados de las mismas.

- **FASE II. Contabilidad energética**
- **FASE III. Identificación y cálculo de medidas de mejora**

Las tareas a realizar en cada fase se desarrollan en los capítulos 3, 4 y 5 de esta guía.

2.2 ¿Por dónde empezar?
Antes de proceder al levantamiento y al análisis de datos, se debe realizar una recopilación previa de información.

Para esto se debe considerar:
- **Información sobre las instalaciones**: resulta muy conveniente poder contar con todo tipo de documentación relacionada con las instalaciones y su funcionamiento energético. Se deben recopilar:
  - Planos del establecimiento.
  - Diagramas unilineales.
  - Boletas de los suministros energéticos de al menos los últimos 12 meses.
  - Horarios de funcionamiento.
  - Otros

La información del plano se puede resumir en una planilla, tal como se muestra a continuación:

<table>
<thead>
<tr>
<th>Sala</th>
<th>Horario</th>
<th>Nº personas (media)</th>
<th>Metros cuadrados</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala 1</td>
<td>9:00-13:00 / 15:00-17:00</td>
<td>28</td>
<td>31,50</td>
<td>1</td>
</tr>
<tr>
<td>Sala 2</td>
<td>10:00-12:00 / 14:00-17:00</td>
<td>22</td>
<td>23,32</td>
<td>1</td>
</tr>
<tr>
<td>Sala 3</td>
<td>9:00-13:00 / 14:00-17:00</td>
<td>50</td>
<td>61,55</td>
<td>1</td>
</tr>
<tr>
<td>Sala 4</td>
<td>9:00-13:00 / 15:00-17:00</td>
<td>50</td>
<td>60,45</td>
<td>1</td>
</tr>
<tr>
<td>Sala 5</td>
<td>9:00-13:00 / 14:00-16:00</td>
<td>40</td>
<td>42,39</td>
<td>1</td>
</tr>
<tr>
<td>Sala computación</td>
<td>8:00-13:00 / 14:00-18:00</td>
<td>25</td>
<td>39,80</td>
<td>1</td>
</tr>
<tr>
<td>Sala de reuniones</td>
<td>10:00-14:00</td>
<td>10</td>
<td>24,09</td>
<td>1</td>
</tr>
<tr>
<td>Aseos</td>
<td>8:00-13:00 / 14:00-18:00</td>
<td>2</td>
<td>8,82</td>
<td>2</td>
</tr>
<tr>
<td>Despachos 1,2,4,5</td>
<td>9:00-13:00 / 14:00-18:00</td>
<td>2</td>
<td>11,32</td>
<td>4</td>
</tr>
<tr>
<td>Despacho 3</td>
<td>9:00-14:00</td>
<td>1</td>
<td>11,50</td>
<td>1</td>
</tr>
<tr>
<td>Despacho 7</td>
<td>9:00-12:00</td>
<td>1</td>
<td>17,73</td>
<td>1</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>8:00-18:00</td>
<td>80</td>
<td>23,33</td>
<td>1</td>
</tr>
<tr>
<td>Comedor y cocina</td>
<td>12:00-16:00</td>
<td>15</td>
<td>18,30</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 1. Ejemplo de ordenación de la información.
PRIMEROS PASOS DEL DIAGNÓSTICO ENERGÉTICO

2.4 Preparación de la visita

Es recomendable planificar la visita de las instalaciones, avisando con suficiente antelación al personal de mantenimiento para que puedan ayudar con el levantamiento de información.

También se debe preparar de forma previa el material a emplear en la visita: fichas para el registro de datos y equipos de medición.

2.5 Referencias

- Dirección Meteorológica de Chile.
- Ordenación General de Urbanismo y Construcciones (OGUC).
- Reglamento de Instalaciones Térmicas en los Edificios en Chile (RITCH).
- Decreto 97, de definición de estándares mínimos de eficiencia energética.
- Resolución sobre etiquetado de eficiencia energética.

CONSEJO

Se recomienda preparar las fichas de levantamiento de datos adaptadas a las necesidades del diagnóstico energético del establecimiento educacional. En el capítulo 3 de levantamiento de datos hay ejemplos de cómo trabajarlas y en el Anexo I hay fichas en blanco para su utilización.

En el caso de realizar mediciones de parámetros energéticos (temperatura, iluminancia, entre otros), se deberán preparar los equipos de medición a emplear. Para mayor información consultar el capítulo 3 y el Anexo II.

RESULTADOS CONSEGUIDOS

- Alcance del diagnóstico energético definido.
- Información recopilada sobre los edificios y las instalaciones.
- Fichas de levantamiento de datos preparadas para la visita a terreno.

2.3 ¿Quién me puede ayudar?

Es importante identificar al personal que puede facilitar información sobre la operación: auxiliares, encargados de mantenimiento u otros.

También se debe conocer quién es el responsable de las boletas de los suministros energéticos y de otros datos de interés para el diagnóstico tales como planos del establecimiento, horas de uso de cada sala u ocupación, entre otros.

1 Dirección Meteorológica de Chile: http://www.meteochile.gob.cl/
3 Fase I: Levantamiento de datos

El levantamiento de datos es el primer paso de un diagnóstico energético. Consiste en identificar los equipos consumidores de energía y es muy útil para una IES ya que permite conocer los principales sistemas de la instalación.
3. Fase I: Levantamiento de datos

En general, se distinguen cinco categorías de sistemas que coinciden con los principales usos de la energía en las instalaciones, donde se incluyen los puntos clave sobre los que se debe prestar especial atención en el levantamiento de los datos que señala el siguiente diagrama:

### ILUMINACIÓN

3.2 Registro de datos de iluminación

El catastro debe recoger las características de los distintos tipos de ampolletas y sus respectivos equipos auxiliares, así como su horario de utilización. Se debe realizar para todas las IES (salas de clase, casinos, oficinas, biblioteca, entre otros).

### CONSEJO

El consumo energético, medido en kWh, es igual a la potencia (kW) por el tiempo (horas). Los principales datos que se necesitan obtener durante la visita son, por tanto, la potencia de los equipos consumidores de energía (eléctrica, térmica y otras) y sus horas de uso.

El levantamiento de datos es la primera fase de un diagnóstico energético:

**OBJETIVO**

Realizar el catastro de toda la información necesaria para conocer qué hay en una instalación y cómo funciona.

### 3.1 Planificación del levantamiento de datos

Una vez recabada y analizada la información inicial disponible, se procede a realizar la visita y recorrido en la instalación, ello permitirá una evaluación más completa y certera.

El objetivo principal de este catastro consiste en conocer qué hay en la instalación y cómo funciona, ya que resulta imposible calcular el impacto de las medidas sin conocer a fondo la instalación.

Para establecer el horario de uso de manera sencilla cuando se esté visitando el edificio, se propone elaborar una tabla similar a la siguiente:

<table>
<thead>
<tr>
<th>Recinto</th>
<th>Horas al día</th>
<th>Días al año</th>
<th>Horas anuales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala clase 1</td>
<td>5</td>
<td>4</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>780</td>
</tr>
<tr>
<td>Sala clase 2</td>
<td>6</td>
<td>5</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1170</td>
</tr>
<tr>
<td>Sala de reuniones</td>
<td>2</td>
<td>5</td>
<td>5 x 38 = 190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>190 x 2 = 380</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>12</td>
<td>6</td>
<td>6 x 40 = 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>240 x 12 = 2880</td>
</tr>
<tr>
<td>Oficina profesores</td>
<td>8</td>
<td>5</td>
<td>5 x 38 = 190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>190 x 8 = 1520</td>
</tr>
</tbody>
</table>

**Tabla 2. Ejemplo de estimación de horas de uso de los recintos.**

**FASE II. Contabilidad energética**

**FASE III. Identificación y cálculo de medidas de mejora**
La siguiente tabla muestra los diferentes tipos de ampolletas existentes para facilitar su identificación durante la visita:

<table>
<thead>
<tr>
<th>Tipo de ampolleta</th>
<th>Eficacia (lm/W)</th>
<th>Potencia (W)</th>
<th>Imágenes de los tipos de ampolleta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescente</td>
<td>6-16</td>
<td>20-100</td>
<td>Tipo A Reflector</td>
</tr>
<tr>
<td>De descarga</td>
<td>75-125</td>
<td>20-24000</td>
<td>Ovales Tubulares Lineal Compacta</td>
</tr>
<tr>
<td>Halógena</td>
<td>16-30</td>
<td>55-300</td>
<td>Cúpula Dicroica PAR Lineal Reflector</td>
</tr>
<tr>
<td>Compacta</td>
<td>46-80</td>
<td>10-80</td>
<td>Ahorradora globo Ahorradora torneado Reflector</td>
</tr>
<tr>
<td>LED</td>
<td>80-160</td>
<td>0,2 - 150</td>
<td>Tipo A T8 Reflectora Globo</td>
</tr>
<tr>
<td>Fluorescente</td>
<td>70-120</td>
<td>8-80</td>
<td>Circular TLS TL8, TL10, TL12</td>
</tr>
</tbody>
</table>

Tabla 3. Tipos de ampolletas.

Para más detalle en el conocimiento de los diferentes tipos de ampolletas y otros elementos que componen los sistemas de iluminación se puede consultar la “Guía de Eficiencia Energética en Iluminación. Centros Docentes” del IDAE1.

A continuación se muestra el ejemplo de un catastro realizado para la iluminación de un edificio, a partir de la visita in situ. Se pueden encontrar los formatos de fichas de levantamiento de datos de iluminación en el Anexo I de esta guía.

Para la siguiente tabla muestra los diferentes tipos de ampolletas existentes para facilitar su identificación durante la visita:

<table>
<thead>
<tr>
<th>Recinto</th>
<th>Oficina 1</th>
<th>Sala 1</th>
<th>Sala 1</th>
<th>Sala 1</th>
<th>Sala 1</th>
<th>Bodega</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de ampolleta</td>
<td>Halógena dicroica</td>
<td>Compacta ahorradora torneado</td>
<td>Halógena dicroica</td>
<td>Compacta ahorradora torneado</td>
<td>Incandescente tipo A</td>
<td>Halógena dicroica</td>
</tr>
<tr>
<td>Potencia (W)</td>
<td>50</td>
<td>36</td>
<td>50</td>
<td>32</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>Número de grupos</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Número de ampolleta por grupo</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Potencia del equipo auxiliar (W)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,2</td>
</tr>
<tr>
<td>Potencia total (W)</td>
<td>300</td>
<td>288</td>
<td>550</td>
<td>768</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>Existencia detectores de presencia</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Horas al día</td>
<td>7</td>
<td>2,8</td>
<td>2,8</td>
<td>2,8</td>
<td>2,8</td>
<td>4,2</td>
</tr>
<tr>
<td>Días al año</td>
<td>149</td>
<td>149</td>
<td>149</td>
<td>149</td>
<td>149</td>
<td>149</td>
</tr>
</tbody>
</table>

Tabla 4. Ejemplo de ficha de levantamiento de datos de iluminación.

Además, es necesario identificar la existencia de sistemas centralizados de encendido y apagado, interruptores temporales, detectores de luz natural y aprovechamiento de la luz natural en cada uno de los recintos.

CONSEJO

Revise la “Guía de Eficiencia Energética para Establecimientos Educativos (GEEEduc)” de la Agencia Chilena de Eficiencia Energética2 para encontrar ejemplos de control y diseño de la iluminación.

2 Agencia Chilena de Eficiencia Energética: www.acee.cl/recursos/guia apartado de “Edificación”.

CONSEJO
3.3 Registro de datos de climatización

En el catastro de climatización es necesario distinguir entre los subsistemas: generación de calor y/o frío, distribución y elementos terminales. A continuación se presentan una serie de tablas que pueden servir de herramientas para el levantamiento de la información necesaria para estos subsistemas. Se encuentran además los formatos de las fichas de levantamiento de datos en el Anexo I de la guía.

- Generación de calor

Se debe conocer cuál es el sistema de generación de calor del edificio, teniendo en cuenta que es posible que existan varios sistemas diferentes.

La siguiente tabla muestra los tipos de sistemas más comunes para facilitar su identificación durante la visita:

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calderas</td>
<td>Rendimiento (80-85%) Funcionan a altas temperaturas</td>
</tr>
<tr>
<td>Calentadores</td>
<td>Caldera eléctrica</td>
</tr>
<tr>
<td>Sistemas eléctricos</td>
<td>Caldera de leña</td>
</tr>
<tr>
<td>Estufas</td>
<td>De leña</td>
</tr>
</tbody>
</table>

La "Guía para Calificación de Consultores en Eficiencia Energética" de la Agencia Chilena de Eficiencia Energética clasifica las calderas y explica su funcionamiento para un mejor entendimiento de este tipo de equipos de generación de calor.

A la hora de recopilar la información sobre una caldera, o cualquier otro equipo de sistema, corresponde fijarse en la placa de características técnicas, en las especificaciones de los catálogos del fabricante y en los datos que facilitados por el personal de mantenimiento:

Ejemplo de ficha levantamiento de datos de una caldera

<table>
<thead>
<tr>
<th>Designación Caldera 1</th>
<th>Descripción Caldera de condensación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca Viessmann</td>
<td>Modulo (25% - 100%)</td>
</tr>
<tr>
<td>Potencia térmica nominal kW</td>
<td>503</td>
</tr>
<tr>
<td>Rendimiento nominal (%)</td>
<td>106%</td>
</tr>
<tr>
<td>Rendimiento real medido (%)</td>
<td>[ ]</td>
</tr>
<tr>
<td>Tipo de regulación del quemador</td>
<td>Modulante (25% - 100%)</td>
</tr>
<tr>
<td>Año de instalación</td>
<td>2007</td>
</tr>
<tr>
<td>Servicio</td>
<td>Edificio principal</td>
</tr>
<tr>
<td>Horario de operación</td>
<td>24 horas</td>
</tr>
<tr>
<td>Periodo de calefacción</td>
<td>Mayo - septiembre</td>
</tr>
</tbody>
</table>

En el caso de encontrar estufa de leña, de la misma manera que en casos anteriores, se debe realizar el levantamiento de sus principales características:

<table>
<thead>
<tr>
<th>Descripción Estufa de leña</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo Cámaras sencillas</td>
</tr>
<tr>
<td>Recinto Oficina 1</td>
</tr>
<tr>
<td>Nº Unidades 1</td>
</tr>
<tr>
<td>Marca Gross</td>
</tr>
<tr>
<td>Área de calefacción máx.</td>
</tr>
<tr>
<td>Potencia (Kcal/h)</td>
</tr>
<tr>
<td>Tipo de combustible</td>
</tr>
<tr>
<td>Horas de uso anuales</td>
</tr>
</tbody>
</table>

Tabla 6. Ejemplo de ficha levantamiento de datos de una caldera

Tabla 7. Ejemplo de levantamiento de datos de una estufa

3 Agencia Chilena de la Eficiencia Energética: www.acee.cl/recursos/guías, área de acción “Industria y Minería”
FASE I: LEVANTAMIENTO DE DATOS

• Generación de frío

Es necesario identificar el sistema de generación de frío y calor del establecimiento educacional, ya que pueden existir varios sistemas a la vez.

La tabla a continuación muestra los diferentes tipos de sistemas de generación de frío para facilitar su identificación durante la visita:

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller</td>
<td></td>
</tr>
<tr>
<td>Aire-Aire</td>
<td>No necesita circuito secundario. Uso con splits. Rendimiento bajo.</td>
</tr>
<tr>
<td>Aire-Agua</td>
<td>Necesita tuberías para canalizar el agua hacia la UMA. Rendimiento medio.</td>
</tr>
<tr>
<td>Agua-Agua</td>
<td>Necesita torres de refrigeración y tuberías para el agua fría. Rendimiento alto.</td>
</tr>
<tr>
<td>Bomba de calor</td>
<td></td>
</tr>
</tbody>
</table>

A partir de la placa de los sistemas de generación de frío se deben anotar los siguientes parámetros:

<table>
<thead>
<tr>
<th>Ejemplo de ficha levantamiento de datos de un chiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designación</td>
</tr>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Recinto</td>
</tr>
<tr>
<td>N° Unidades</td>
</tr>
<tr>
<td>Marca</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>Potencia térmica nominal (kW)</td>
</tr>
<tr>
<td>Potencia eléctrica nominal (kW)</td>
</tr>
<tr>
<td>Rendimiento nominal</td>
</tr>
<tr>
<td>Año de instalación</td>
</tr>
<tr>
<td>Servicio</td>
</tr>
<tr>
<td>Horario de Operación</td>
</tr>
<tr>
<td>Período de refrigeración</td>
</tr>
</tbody>
</table>

Tabla 9. Ficha de levantamiento de datos de un chiller.

A continuación se muestra el ejemplo de un catastro realizado para una UMA, a partir de la visita in situ:

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Imágenes de los sistemas de distribución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberías</td>
<td></td>
</tr>
<tr>
<td>Conductos de aire caliente</td>
<td></td>
</tr>
<tr>
<td>Unidades Manejadoras de Aire</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 10. Tipos de sistemas de distribución.

• Distribución

Para conectar los sistemas de generación de calor y frío con los elementos terminales existen diferentes sistemas de distribución que también se deben identificar en la visita:

<table>
<thead>
<tr>
<th>Ficha de levantamiento de datos de una UMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designación</td>
</tr>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Recinto</td>
</tr>
<tr>
<td>Marca</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>Potencia térmica nominal (kW)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Año de instalación</td>
</tr>
<tr>
<td>Servicio</td>
</tr>
<tr>
<td>Horas/Año de operación</td>
</tr>
</tbody>
</table>

Tabla 11. Ejemplo ficha de levantamiento de datos de una Unidad Manejadora de Aire.

Es necesario identificar si las tuberías y conductos están aislados, así como el material de aislación térmica (lanas de minerales y vidrio, entre otros).

Si se desea conocer más sobre sistemas de refrigeración se recomienda consultar la “Guía de Asistencia Técnica de EE en sistemas Motrices. Sistemas de Refrigeración” de la Agencia Chilena de Eficiencia Energética.  

4 Agencia Chilena de Eficiencia Energética: www.aeee.cl/recursos/guias, área de acción “Industria y Minería”
FASE I: LEVANTAMIENTO DE DATOS

 Elementos terminales

Dependiendo del tipo de sistema de climatización existente se deben identificar: radiadores, fancoils, losa radiante o conductos de aire en cada uno de las IES.

La siguiente tabla muestra los diferentes elementos terminales para facilitar su identificación durante la visita:

<table>
<thead>
<tr>
<th>Tipo de elemento terminal</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemas de radiadores</td>
<td>Intercambio de calor por radiación y convección. Requiere temperaturas en torno a 70ºC.</td>
</tr>
<tr>
<td>Losa radiante</td>
<td>Intercambio de calor por conducción y convección. Requiere de menor temperatura de salida (35-40ºC).</td>
</tr>
<tr>
<td>Fancoils</td>
<td>Split (chorro horizontal desde la muralla), Cassette (chorro vertical desde el cielo)</td>
</tr>
<tr>
<td>Conductos sin impulsión</td>
<td>El aire caliente sale de los conductos sin necesidad de ventilador.</td>
</tr>
</tbody>
</table>

Tabla 13. Tipos de elementos terminales.

A continuación se muestra el ejemplo del registro de datos para un elemento terminal, a partir de la información de la visita:

Ejemplo de ficha levantamiento de datos de elementos terminales

<table>
<thead>
<tr>
<th>Designación</th>
<th>Fancoil 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Fancoil</td>
</tr>
<tr>
<td>Recinto</td>
<td>Oficina 1</td>
</tr>
<tr>
<td>Marca</td>
<td>Junkers</td>
</tr>
<tr>
<td>Nº Unidades</td>
<td>10</td>
</tr>
<tr>
<td>Potencia frigorífica (kW)</td>
<td>7,6</td>
</tr>
<tr>
<td>Potencia térmica (kW)</td>
<td>17</td>
</tr>
<tr>
<td>Horas de funcionamiento</td>
<td>660</td>
</tr>
<tr>
<td>Designación</td>
<td>Fancoil 1</td>
</tr>
<tr>
<td>Descripción</td>
<td>Fancoil</td>
</tr>
</tbody>
</table>

Tabla 14. Ejemplo de ficha de levantamiento de datos de elementos terminales.

3.4 Registro de datos de agua caliente sanitaria

El sistema de Agua Caliente Sanitaria (ACS) es el encargado de calentar el agua y distribuirla a temperatura ambiente a los puntos de consumo. Los sistemas de ACS pueden formar parte del sistema de calefacción o tener alguno de los siguientes sistemas autónomos:

<table>
<thead>
<tr>
<th>Tipo de sistema</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calefón de paso</td>
<td>Consumen a demanda</td>
</tr>
<tr>
<td>Calefón eléctrico</td>
<td>Calefón de gas</td>
</tr>
<tr>
<td>Termo de acumulación</td>
<td>Acumulan agua a una temperatura regulada por termostato</td>
</tr>
</tbody>
</table>

Tabla 14. Tipos de sistemas de Agua Caliente Sanitaria.

Si se desean conocer mejor los sistemas de producción de ACS, el IDAE ha publicada la “Guía técnica de Agua Caliente Sanitaria Central”, donde se pueden ver los tipos de sistemas que existen y los elementos que lo componen.

* Agencia Chilena de Eficiencia Energética. www.acee.cl/recursos/guias, área de acción “Industria y Minería”
* IDAE (Instituto por la Diversificación y el Ahorro Energético de España). http://www.idae.es/ dentro de Publicaciones → Ahorro y Eficiencia energética → Edificios
En el caso de que exista un acumulador para el agua caliente se debe anotar el volumen del mismo y otras características, tal como se muestra en el ejemplo a continuación:

<table>
<thead>
<tr>
<th>Elemento de la envolvente térmica</th>
<th>Tipologías principales de materiales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialidad principal del edificio</td>
<td>Albañilería</td>
</tr>
<tr>
<td>Aislamiento de envolvente térmica</td>
<td>Lana mineral</td>
</tr>
<tr>
<td>Materialidad del marco de ventanas</td>
<td>Madera</td>
</tr>
<tr>
<td>Tipo de acristalamiento</td>
<td>Simple</td>
</tr>
</tbody>
</table>

Tabla 16. Ejemplo ficha de levantamiento de datos termo acumulador de Agua Caliente Sanitaria.

Se pueden encontrar fichas de levantamiento de datos para estos equipos en el Anexo I de esta guía.

Se debe considerar la ubicación de estos elementos, ya que la intemperie y la radiación solar pueden afectar el funcionamiento y la eficiencia de algunos aparatos. A modo de ejemplo, si un equipo se encuentra en una cubierta, es necesario identificar si existe un elemento de sombra.

Además, se debe registrar el uso diario del ACS, el número de llaves de lavamanos y duchas y la existencia de perlizadores (dispositivo ahorrador de agua cuyo funcionamiento se basa en la mezcla de agua y aire produciendo un chorro abundante y suave generando un ahorro de hasta un 50 % de agua y energía). Para más información consultar las páginas 179 a 186 de la “Guía de Eficiencia Energética para Establecimientos de Salud (GEEESa)“ de la Agencia Chilena de Eficiencia Energética.

3.5 Registro de datos de la envolvente térmica

Es necesario caracterizar la envolvente térmica del establecimiento educacional a partir de los siguientes datos: material de construcción del edificio, aislamiento de los elementos de la envolvente térmica como cielo, muros y piso, materialidad de las ventanas y puertas, y tipo de acristalamiento, si es simple o termopanel.
FASE I: LEVANTAMIENTO DE DATOS

A continuación se muestra el ejemplo de un catastro realizado para la envolvente de un edificio, a partir de la visita en terreno:

<table>
<thead>
<tr>
<th>Materialidad principal</th>
<th>Albañilería</th>
<th>Albañilería</th>
<th>Madera</th>
<th>Madera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aislamiento de muros</td>
<td>No</td>
<td>Poliestireno 40mm</td>
<td>No</td>
<td>Lana mineral 50mm</td>
</tr>
<tr>
<td>Aislamiento de cielo</td>
<td>No</td>
<td>No</td>
<td>Lana de vidrio 40 mm</td>
<td>Poliestireno 50mm</td>
</tr>
<tr>
<td>Aislamiento de pisos</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Número de puertas</td>
<td>20</td>
<td>15</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Materialidad de puertas</td>
<td>Madera</td>
<td>Madera</td>
<td>Madera</td>
<td>Madera</td>
</tr>
<tr>
<td>Número de ventanas</td>
<td>62</td>
<td>58</td>
<td>60</td>
<td>69</td>
</tr>
<tr>
<td>Materialidad de ventanas</td>
<td>Aluminio</td>
<td>PVC</td>
<td>Madera</td>
<td>Madera</td>
</tr>
<tr>
<td>Tipo de acristalamiento en ventanas</td>
<td>Simple</td>
<td>Simple</td>
<td>Simple</td>
<td>Termopanel</td>
</tr>
</tbody>
</table>

Tabla 18. Ejemplo de ficha de levantamiento de datos de la envolvente térmica.

El formato de esta ficha de levantamiento de datos se encuentra en el Anexo I.

Debe realizarse una inspección de aspectos tales como continuidad de la instalación de materiales aislantes, en especial en cielos de techumbre. Además de revisar la existencia de grietas en muros y el estado de conservación de sellos de ventanas y puertas, junto con los encuentros entre éstas y muros a través de marcos.

El objetivo de ésto es determinar potenciales infiltraciones de aire así como “puentes térmicos” dados por la discontinuidad del material aislante.

Existen diferentes opciones para obtener los datos del aislamiento de la envolvente:

- Revisión de los planos del edificio o del informe del proyecto de edificación.
- Realización de una prueba de la envolvente, lo que permite una caracterización en detalle. Esta medida es muy agresiva y normalmente no se lleva a cabo.
- Medición de la transmittancia térmica, es decir, determinar la energía que atraviesa la superficie o los materiales que forman la envolvente empleando un instrumento de medición llamado termoflujómetro. Cuando no se dispone de este equipo, también se puede estimar en función del espesor y del año de construcción del edificio.
- Medición de la transmitancia térmica, es decir, determinar la energía que atraviesa la superficie o los materiales que forman la envolvente empleando un instrumento de medición llamado termoflujómetro. Cuando no se dispone de este equipo, también se puede estimar en función del espesor y del año de construcción del edificio.

También es recomendable hacer un diagnóstico de la orientación y los sombreadores del edificio, ya que dichos factores pueden afectar a la demanda energética del mismo. Si se dispone de una brújula o GPS (Sistema de Posicionamiento Global) será más sencillo poder orientar todos los puntos cardinales en la situación del edificio. En caso de no disponer de ningún equipo de ayuda para determinar la orientación habrá que fijarse en las posiciones del sol a lo largo del día con respecto al edificio.

Existen diferentes opciones para obtener los datos del aislamiento de los equipos:

- Revisión de los planos del edificio o del informe del proyecto de edificación.
- Realización de una prueba de la envolvente, lo que permite una caracterización en detalle. Esta medida es muy agresiva y normalmente no se lleva a cabo.
- Medición de la transmitancia térmica, es decir, determinar la energía que atraviesa la superficie o los materiales que forman la envolvente empleando un instrumento de medición llamado termoflujómetro. Cuando no se dispone de este equipo, también se puede estimar en función del espesor y del año de construcción del edificio.

3.6 Registro de datos de los equipos

En este apartado se incluyen todos los equipos consumidores de energía que no pertenezcan a las categorías anteriores como la iluminación y climatización. En primer lugar habrá que registrar el tipo de equipo: oficina, audiovisuales, laboratorio, ascensores, equipos de cocina y otros. Los que más predominan en los centros educacionales son los equipos de oficina (computadores, impresoras, entras otros).

Se anotarán en una tabla como la siguiente las orientaciones de cada una de las salas que tienen contacto con la fachada, pues son estas las que se van a ver afectadas por las variaciones climatológicas externas:

<table>
<thead>
<tr>
<th>Recinto</th>
<th>Orientación</th>
<th>Recinto</th>
<th>Orientación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala de reuniones</td>
<td>Poniente</td>
<td>Comedor y Cocina</td>
<td>Norte y Oriente</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>Poniente</td>
<td>Gimnasio</td>
<td>Sur y Oriente</td>
</tr>
<tr>
<td>Aseos hombre</td>
<td>Poniente</td>
<td>Sala 7</td>
<td>Sur</td>
</tr>
<tr>
<td>Aseos mujer</td>
<td>Poniente</td>
<td>Sala Computación</td>
<td>Sur</td>
</tr>
<tr>
<td>Dirección UTP</td>
<td>Norte</td>
<td>Sala Multimedia</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 19. Ejemplo de registro de orientaciones de los recintos.

Los ascensores pueden repercutir en gran medida en el consumo, por ello, si existen en el edificio, se debe anotar el tipo de ascensor (eléctrico de tracción, hidráulico o de tracción vertical) y las características del motor.

Los formatos de las fichas de levantamiento de datos para estos equipos se encuentran en el Anexo I.

Figura 3. Ejemplo de plano de designación de orientaciones.

Tabla 20. Ejemplo de ficha de levantamiento de datos de equipos.
3.7 Medición de parámetros

Si se quiere realizar un diagnóstico de mayor profundidad y se dispone de los equipos adecuados, se pueden realizar mediciones sobre determinados parámetros. Para ello, y en función de la información que se quiere obtener, se utilizan los equipos que se describen en la tabla siguiente:

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Equipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía eléctrica de la instalación (corriente, tensión, factor de potencia)</td>
<td>Analizador de redes</td>
</tr>
<tr>
<td>Temperatura ambiente</td>
<td>Registrador de temperatura</td>
</tr>
<tr>
<td>Temperatura superficial</td>
<td>Cámara termográfica</td>
</tr>
<tr>
<td>Rendimiento de combustión de una caldera</td>
<td>Analizador de gases</td>
</tr>
<tr>
<td>Cantidad de gases emitidos por una caldera</td>
<td></td>
</tr>
<tr>
<td>Nivel de ocupación de una sala</td>
<td>Registrador de ocupación</td>
</tr>
<tr>
<td>Iluminancia</td>
<td>Luxómetro</td>
</tr>
</tbody>
</table>

En el caso de los datos resultantes de temperatura ambiente e iluminancia, es importante comparar los datos de medición de los parámetros con los rangos recomendados:

Para mayor información sobre equipos de medición consultar el Anexo II de esta guía. Adicionalmente, existen documentos donde es posible adquirir mayor conocimiento sobre el modo de utilización de estos equipos. Una guía muy interesante a consultar es la “Guía básica de instrumentación de medida de instalaciones en los edificios publicada por la Fundación de la Energía de la Comunidad de Madrid”.

Tabla 21. Equipos y parámetros de medición

3.8 Referencias

- Guía para Calificación de Consultores en Eficiencia Energética (Agencia Chilena de Eficiencia Energética).
- Guía de Asistencia Técnica de EE en sistemas Motrices. Sistemas de Refrigeración (Agencia Chilena de Eficiencia Energética).
- Guía de Asistencia Técnica de EE en Sistemas Motrices. Sistemas de bombeo (Agencia Chilena de Eficiencia Energética).
- Guía técnica de Agua Caliente Sanitaria Central (Instituto para la Diversificación y Ahorro de la Energía, IDAE).
- Guía básica de instrumentación de medida de instalaciones en los edificios (Fundación de la Energía de la Comunidad de Madrid).

Tabla 22. Rangos recomendados para parámetros de medición
Fuente: RITCH /Norma NCH 4/2003

Tabla 23. Ejemplo de datos obtenidos con un luxómetro en un establecimiento educacional
Fuente: Norma NCH 4/2003
Fase II: Contabilidad energética

La contabilidad energética es la segunda fase de un diagnóstico energético, en la que se analizan todos los suministros de energía y se realiza un reparto del consumo en la instalación. Es aplicable en una IES para conocer los puntos de mayor consumo de energía.
4. Fase II: Contabilidad energética

**4.1 Conceptos básicos**

**Balance energético**: asignación de consumo de energía a equipos, sistemas, operaciones o cualquier otra división de la organización.

**Línea base**: período de referencia en cuanto a consumos de energía y su costo y, si es posible, su relación con las variables que más influyen en los consumos, como el nivel de actividad, el número de usuarios, variables climatológicas y otras.

Los valores así definidos se deben emplear como referencia para el cálculo de los ahorros que se deriven de las mejoras propuestas.

**Desempeño energético**: resultados medibles relacionados con la eficiencia energética y el uso y consumo de la energía.

**4.2 Análisis de suministros energéticos**

En primer lugar, se deben analizar las boletas de todos los suministros energéticos utilizados en los establecimientos educacionales. Es decir, se analizará tanto la energía eléctrica como el resto de los combustibles utilizados (gas licuado, gas natural, diesel, pellets, leña).

En la boleta es importante localizar el consumo de energía y el período de lectura. En la siguiente figura se puede ver cómo localizar dichos valores:

![Figura 4. Ejemplo de boleta de consumo eléctrico.](image)

La contabilidad energética es la segunda fase de un diagnóstico energético:

**FASE II. Contabilidad energética**

Analizar el comportamiento de los consumos de los establecimientos educacionales, supervisar el flujo de energía e identificar debilidades para luego seleccionar medidas de mejora adecuadas.

<table>
<thead>
<tr>
<th>Período de lectura</th>
<th>Consumo de electricidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desde-Hasta</td>
<td>Energía activa (kWh)</td>
</tr>
<tr>
<td>28-Dic-12 27-Ene-13</td>
<td>91.275</td>
</tr>
<tr>
<td>27-Ene-13 28-Feb-13</td>
<td>6.427</td>
</tr>
<tr>
<td>28-Feb-13 27-Mar-13</td>
<td>81.005</td>
</tr>
<tr>
<td>27-Mar-13 28-Abr-13</td>
<td>74.859</td>
</tr>
<tr>
<td>28-Abr-13 29-May-13</td>
<td>87.555</td>
</tr>
<tr>
<td>29-May-13 28-Jun-13</td>
<td>94.785</td>
</tr>
<tr>
<td>27-Jul-13 28-Ago-13</td>
<td>94.758</td>
</tr>
<tr>
<td>28-Ago-13 27-Sept-13</td>
<td>78.551</td>
</tr>
<tr>
<td>27-Sept-13 28-Oct-13</td>
<td>91.999</td>
</tr>
<tr>
<td>27-Nov-13 29-Dic-13</td>
<td>89.457</td>
</tr>
<tr>
<td><strong>Total año 2013</strong></td>
<td><strong>968.853</strong></td>
</tr>
</tbody>
</table>

Tabla 24. Ejemplo de datos de consumo de electricidad obtenidos de las boletas.
En el gráfico, se deben analizar los meses con máximos de consumo que coincidirán, en el caso de los establecimientos educacionales, con los meses invernales y los mínimos, con los meses de verano, ajustándose al uso que se hace del edificio.

Este análisis se debe realizar para los distintos suministros energéticos con el fin de resumir el comportamiento energético global de las instalaciones.

También se pueden representar los datos en una gráfica para analizar el comportamiento energético del establecimiento educacional a lo largo del año:

Gráfico 3. Ejemplo de curva de consumo eléctrico anual

Caso práctico
ANÁLISIS DE LAS MEDICIONES DE ELECTRICIDAD

Situación:
Analizar el comportamiento energético de un establecimiento educacional a partir de los datos de consumo eléctrico medidos con un analizador de redes. Con este equipo de medición podemos obtener los consumos del edificio cada hora o incluso cada 15 minutos. Para mayor información sobre este equipo consultar el Anexo II.

Datos:

<table>
<thead>
<tr>
<th>Hora</th>
<th>L</th>
<th>M</th>
<th>X</th>
<th>J</th>
<th>V</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84,9</td>
<td>86,9</td>
<td>83,4</td>
<td>81,4</td>
<td>86,1</td>
<td>82,0</td>
<td>85,3</td>
</tr>
<tr>
<td>1</td>
<td>84,7</td>
<td>84,9</td>
<td>83,0</td>
<td>81,4</td>
<td>84,2</td>
<td>81,3</td>
<td>88,6</td>
</tr>
<tr>
<td>2</td>
<td>84,9</td>
<td>85,1</td>
<td>83,0</td>
<td>81,6</td>
<td>84,1</td>
<td>81,2</td>
<td>85,9</td>
</tr>
<tr>
<td>3</td>
<td>85,4</td>
<td>84,7</td>
<td>83,1</td>
<td>81,8</td>
<td>84,3</td>
<td>81,8</td>
<td>84,6</td>
</tr>
<tr>
<td>4</td>
<td>85,0</td>
<td>84,7</td>
<td>83,1</td>
<td>81,8</td>
<td>84,4</td>
<td>81,7</td>
<td>84,8</td>
</tr>
<tr>
<td>5</td>
<td>85,3</td>
<td>84,6</td>
<td>83,0</td>
<td>81,6</td>
<td>84,4</td>
<td>82,3</td>
<td>85,0</td>
</tr>
<tr>
<td>6</td>
<td>83,9</td>
<td>82,7</td>
<td>82,6</td>
<td>81,5</td>
<td>83,4</td>
<td>81,3</td>
<td>84,5</td>
</tr>
<tr>
<td>7</td>
<td>99,3</td>
<td>101,9</td>
<td>98,4</td>
<td>95,8</td>
<td>95,2</td>
<td>92,3</td>
<td>84,2</td>
</tr>
<tr>
<td>8</td>
<td>153,2</td>
<td>151,0</td>
<td>153,5</td>
<td>152,2</td>
<td>149,5</td>
<td>135,2</td>
<td>80,7</td>
</tr>
<tr>
<td>9</td>
<td>203,2</td>
<td>195,5</td>
<td>197,7</td>
<td>203,3</td>
<td>190,4</td>
<td>185,6</td>
<td>75,4</td>
</tr>
<tr>
<td>10</td>
<td>209,3</td>
<td>198,8</td>
<td>202,3</td>
<td>209,3</td>
<td>194,6</td>
<td>191,6</td>
<td>73,0</td>
</tr>
<tr>
<td>11</td>
<td>211,0</td>
<td>201,5</td>
<td>203,5</td>
<td>204,2</td>
<td>195,6</td>
<td>189,6</td>
<td>71,7</td>
</tr>
<tr>
<td>12</td>
<td>210,7</td>
<td>202,6</td>
<td>204,1</td>
<td>202,1</td>
<td>194,8</td>
<td>185,2</td>
<td>71,9</td>
</tr>
</tbody>
</table>

Esta información permite obtener curvas de consumo semanal o diario.

Resultados:
Curva de consumo semanal
Un estudio pormenorizado del día energético medio hábil y de los festivos, permite entender mejor cómo y cuándo se consume la energía eléctrica en el establecimiento educacional.

Lo interesante de las curvas de consumo semanales es ver las diferencias entre el perfil de uso a lo largo de la semana y los fines de semana.
4.3 Elaboración del balance energético

4.3.1 Conceptos básicos

**Consumo Energético**

El consumo energético de un sistema es igual a la potencia por el tiempo de utilización.

En climatización, el consumo energético es igual al producto de la potencia, al tiempo de funcionamiento y al factor de carga de los equipos. El factor de carga de los equipos que funcionan continuamente tiene como valor la unidad, sin embargo es menor en los equipos que están controlados por sensores (temperatura, humedad, presión, etc.) y que funcionan discontinuamente con detenciones y activaciones repentinas.

La estimación del factor de carga es uno de los requisitos más complicados. Se puede hacer de las siguientes formas:

- **OBSERVACIÓN DURANTE LAS VISITAS**
- **MEDICIONES**
- **AJUSTE DEL CONSUMO**
- **EXPERIENCIA**

En los edificios, la demanda energética es de dos tipos:

- **Calefacción**
- **Enfriamiento**

Por otro lado, el consumo de climatización está relacionado con el rendimiento de los equipos de generación de calor y frío:

\[ \text{Consumo energético (kWh)} = \frac{\text{Demanda energética (kWh)}}{\text{Rendimiento}} \]

De este modo, algunas de las oportunidades de reducción de consumos en climatización estarán relacionadas con el aumento del rendimiento de los equipos o la disminución de la demanda de calefacción o refrigeración.

**Curva de consumo diario**

La curva diaria aporta información muy interesante para conocer el comportamiento horario. A diferencia de las curvas semanales, donde se utiliza el consumo acumulado, en las curvas diarias es interesante evaluar cómo aumenta o disminuye la potencia.

Este análisis permite caracterizar en detalle el patrón de consumo respecto de la cuenta final y los costos dentro de horarios punta.
### 4.3.2 Tipos de balances energéticos

A partir del catastro realizado y de la información de las boletas de suministros energéticos se pueden elaborar diferentes balances energéticos:

- **Balance por suministros**: consiste en desglosar por fuentes de energía utilizadas todo el consumo energético de la instalación. Es decir, se basa en dividir el consumo energético total diferenciando el consumo eléctrico y el consumo de combustibles (diesel, gas natural, leña, entre otros).

- **Balance por usos total**: consiste en desglosar por centros de consumo todo el consumo energético total de la instalación sin diferencias por fuente energética, tal y como se muestra en el siguiente gráfico:

- **Balance por usos de una fuente de energía**: consiste en desglosar por centros de consumo todo el consumo energético de la instalación para una determinada fuente energética. Es decir, se debe indicar el porcentaje de consumo de una determinada fuente de energía para cada uso.

#### Tabla 25. Ejemplo de balance de electricidad por usos.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Consumo de electricidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>Calefacción</td>
<td>2.900</td>
</tr>
<tr>
<td>Refrigeración</td>
<td>2.500</td>
</tr>
<tr>
<td>Iluminación</td>
<td>24.000</td>
</tr>
<tr>
<td>Equipos de oficina</td>
<td>17.800</td>
</tr>
<tr>
<td>Otros artefactos</td>
<td>2.100</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>49.300</strong></td>
</tr>
</tbody>
</table>

#### Caso práctico

**ELABORACIÓN DE UN BALANCE ENERGÉTICO EN EDUCACIÓN SUPERIOR**

**Situación:**
Se trata de elaborar el balance de electricidad por usos para un centro de Educación Superior a partir de los datos levantados en la visita y la información de las boletas.

**Datos:**
A continuación se muestran el catastro de equipos elaborado a lo largo de la visita, así como las boletas de electricidad referente al último año.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Consumo electricidad (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>8.799</td>
</tr>
<tr>
<td>Febrero</td>
<td>8.430</td>
</tr>
<tr>
<td>Marzo</td>
<td>8.559</td>
</tr>
<tr>
<td>Abril</td>
<td>10.719</td>
</tr>
<tr>
<td>Mayo</td>
<td>12.519</td>
</tr>
<tr>
<td>Junio</td>
<td>12.399</td>
</tr>
<tr>
<td>Julio</td>
<td>9.932</td>
</tr>
<tr>
<td>Agosto</td>
<td>9.879</td>
</tr>
<tr>
<td>Septiembre</td>
<td>9.632</td>
</tr>
<tr>
<td>Octubre</td>
<td>9.519</td>
</tr>
<tr>
<td>Noviembre</td>
<td>9.159</td>
</tr>
<tr>
<td>Diciembre</td>
<td>8.340</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>117.888</strong></td>
</tr>
</tbody>
</table>

**Equipo** | **Cantidad** | **Potencia (W)** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos Fluorescentes</td>
<td>650</td>
<td>36</td>
</tr>
<tr>
<td>Computadores</td>
<td>85</td>
<td>350</td>
</tr>
<tr>
<td>Impresoras</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Proyectores</td>
<td>15</td>
<td>250</td>
</tr>
<tr>
<td>Hervidores</td>
<td>8</td>
<td>2.000</td>
</tr>
<tr>
<td>Cafetera</td>
<td>3</td>
<td>1.000</td>
</tr>
<tr>
<td>Aire Acondicionado</td>
<td>2</td>
<td>1.300</td>
</tr>
<tr>
<td>Refrigerador</td>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td>Microondas</td>
<td>2</td>
<td>1.500</td>
</tr>
<tr>
<td>Acumuladores</td>
<td>5</td>
<td>3.000</td>
</tr>
<tr>
<td>Bombas recirculación</td>
<td>15</td>
<td>400</td>
</tr>
</tbody>
</table>

**Cálculos justificativos:**
Los consumos asociados a cada uno de los usos se calculan empleando la ecuación:

$$ \text{Consumo (kWh)} = \text{Potencia (kW)} \times \text{Tiempo (horas)} \times \text{Factor de carga} $$
A continuación se muestra el consumo calculado para cada uno de los equipos recopilados en el catastro:

<table>
<thead>
<tr>
<th>Uso</th>
<th>Equipo</th>
<th>Cantidad</th>
<th>Potencia (W)</th>
<th>Horas anuales</th>
<th>Factor de carga</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iluminación</td>
<td>Tubos Fluorescentes</td>
<td>650</td>
<td>36</td>
<td>1.920</td>
<td>100%</td>
<td>44.928</td>
</tr>
<tr>
<td>Equipos ofimáticos</td>
<td>Computadores</td>
<td>85</td>
<td>350</td>
<td>1.440</td>
<td>100%</td>
<td>42.840</td>
</tr>
<tr>
<td>Equipos ofimáticos</td>
<td>Impresoras</td>
<td>50</td>
<td>200</td>
<td>450</td>
<td>100%</td>
<td>4.500</td>
</tr>
<tr>
<td>Equipos no ofimáticos</td>
<td>Proyectores</td>
<td>15</td>
<td>250</td>
<td>960</td>
<td>100%</td>
<td>3.600</td>
</tr>
<tr>
<td>Equipos no ofimáticos</td>
<td>Hervidores</td>
<td>8</td>
<td>2.000</td>
<td>120</td>
<td>100%</td>
<td>1.920</td>
</tr>
<tr>
<td>Equipos no ofimáticos</td>
<td>Cafetera</td>
<td>3</td>
<td>1.000</td>
<td>120</td>
<td>100%</td>
<td>360</td>
</tr>
<tr>
<td>Refrigeración</td>
<td>Aire Acondicionado</td>
<td>2</td>
<td>1.300</td>
<td>1.200</td>
<td>75%</td>
<td>2.340</td>
</tr>
<tr>
<td>Equipos no ofimáticos</td>
<td>Refrigerador</td>
<td>2</td>
<td>400</td>
<td>8.760</td>
<td>30%</td>
<td>2.102</td>
</tr>
<tr>
<td>Equipos no ofimáticos</td>
<td>Microondas</td>
<td>2</td>
<td>1.500</td>
<td>120</td>
<td>100%</td>
<td>360</td>
</tr>
<tr>
<td>ACS</td>
<td>Acumuladores</td>
<td>5</td>
<td>3.000</td>
<td>960</td>
<td>50%</td>
<td>7.200</td>
</tr>
<tr>
<td>Calefacción</td>
<td>Bombas recirculación</td>
<td>15</td>
<td>400</td>
<td>960</td>
<td>75%</td>
<td>4.320</td>
</tr>
<tr>
<td><strong>Total consumo calculado</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>114.470</strong></td>
</tr>
</tbody>
</table>

Consumos de electricidad por usos calculados:

Una vez realizados todos los cálculos, es recomendable comparar el consumo eléctrico total calculado con el consumo registrado en las boletas, con el fin de comprobar la conveniencia de los datos empleados.

En este caso, el consumo total obtenido en el balance es de 114.470 kWh anuales. Esto supone tan solo un 3% de desviación frente al consumo registrado en las boletas, lo cual resulta un ajuste suficiente para poder dar el balance por válido.

**Resultados:**

Se agrupan los diferentes consumos en función de sus usos, obteniendo así el desglose del consumo eléctrico en las instalaciones:
4.4 Establecimiento de la línea base

A partir de la información obtenida en el balance energético se debe establecer una línea base energética, considerando un período para la recopilación de datos adecuado al uso y consumo de energía en la organización. Habitualmente este período es de 12 meses.

Se deben tener en cuenta las variables que afectan al uso y consumo de la energía, entre las cuales pueden estar incluidos el clima, el nivel de actividad, el número de usuarios y otras variables que se consideren oportunas en función de las características de cada IES.

Existen diferentes metodologías para el cálculo de la línea de base, algunas de ellas reconocidas dentro de la medición y la verificación de proyectos ESCO como protocolo internacional IPMVP (EVO) o la guía 14 de ASHRAE.

Los modelos de correlación matemática son muy útiles para relacionar variables como la temperatura o la ocupación en instalaciones con los consumos eléctricos, como se muestra en el caso práctico a continuación:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Grados día línea base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril</td>
<td>1.170</td>
</tr>
<tr>
<td>Mayo</td>
<td>4.052</td>
</tr>
<tr>
<td>Junio</td>
<td>6.398</td>
</tr>
<tr>
<td>Julio</td>
<td>6.582</td>
</tr>
<tr>
<td>Agosto</td>
<td>5.080</td>
</tr>
<tr>
<td>Septiembre</td>
<td>3.851</td>
</tr>
<tr>
<td>Octubre</td>
<td>2.500</td>
</tr>
<tr>
<td>Noviembre</td>
<td>963</td>
</tr>
</tbody>
</table>

**Grados Días de Calefacción**

Los grados día se utilizan para calcular la demanda energética de un sistema de climatización, diferencia de una temperatura de referencia y una temperatura media del día. Cuando la temperatura de referencia sea mayor a la temperatura media diaria se habla de grados día de calefacción (HDD), en cambio si la temperatura base es inferior a la temperatura media diaria, se habla de grados día de enfriamiento (CDD).

Compañía de Eléctricidad de Cauca

Como se puede ver, sólo se consideran los datos correspondientes a los meses en los que hay consumo de energía para calefacción.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Consumo línea base (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril</td>
<td>6.225</td>
</tr>
<tr>
<td>Mayo</td>
<td>14.373</td>
</tr>
<tr>
<td>Junio</td>
<td>20.872</td>
</tr>
<tr>
<td>Julio</td>
<td>22.690</td>
</tr>
<tr>
<td>Agosto</td>
<td>17.146</td>
</tr>
<tr>
<td>Septiembre</td>
<td>13.650</td>
</tr>
<tr>
<td>Octubre</td>
<td>8.230</td>
</tr>
<tr>
<td>Noviembre</td>
<td>6.130</td>
</tr>
</tbody>
</table>

**Cálculos justificativos:**

Se calcula la relación entre los grados día (variable independiente) y el consumo de energía. Esta regresión se hace para la línea base:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Grados día línea base</th>
<th>Consumo línea base (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril</td>
<td>1.170</td>
<td>6.225</td>
</tr>
<tr>
<td>Mayo</td>
<td>4.052</td>
<td>14.373</td>
</tr>
<tr>
<td>Junio</td>
<td>6.398</td>
<td>20.872</td>
</tr>
<tr>
<td>Julio</td>
<td>6.582</td>
<td>22.690</td>
</tr>
<tr>
<td>Agosto</td>
<td>5.080</td>
<td>17.146</td>
</tr>
<tr>
<td>Septiembre</td>
<td>3.851</td>
<td>13.650</td>
</tr>
<tr>
<td>Octubre</td>
<td>2.500</td>
<td>8.230</td>
</tr>
<tr>
<td>Noviembre</td>
<td>963</td>
<td>6.130</td>
</tr>
</tbody>
</table>

**Fuente:** [http://www.evo-world.org](http://www.evo-world.org)
Una vez definida la línea de base energética, los cambios en el desempeño energético de la organización se medirán en relación a ésta. Permite comparar consumos actuales y futuros, conociendo el ahorro conseguido tras la implantación de las medidas.

El desempeño energético se calculará restando el consumo de la línea resultado del consumo de la línea base con las condiciones del año actual, tal y como se puede observar en el ejemplo a continuación:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Consumo línea base con las condiciones del año actual (kWh)</th>
<th>Consumo línea resultado (kWh)</th>
<th>Desempeño energético (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abril</td>
<td>5.804</td>
<td>5.165</td>
<td>5.804 - 5.165 = 638</td>
</tr>
<tr>
<td>Mayo</td>
<td>14.251</td>
<td>12.683</td>
<td>1.568</td>
</tr>
<tr>
<td>Junio</td>
<td>23.041</td>
<td>20.506</td>
<td>2.534</td>
</tr>
<tr>
<td>Julio</td>
<td>27.893</td>
<td>25.982</td>
<td>1.911</td>
</tr>
<tr>
<td>Agosto</td>
<td>21.754</td>
<td>19.361</td>
<td>2.393</td>
</tr>
<tr>
<td>Septiembre</td>
<td>15.101</td>
<td>13.440</td>
<td>1.661</td>
</tr>
<tr>
<td>Octubre</td>
<td>10.089</td>
<td>8.980</td>
<td>1.110</td>
</tr>
<tr>
<td>Noviembre</td>
<td>4.415</td>
<td>3.929</td>
<td>486</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>122.348</strong></td>
<td><strong>110.046</strong></td>
<td><strong>12.301</strong></td>
</tr>
</tbody>
</table>

Tabla 26. Ejemplo de determinación del desempeño energético por comparación con la línea base.

**RESULTADOS CONSEGUIDOS**

- **Suministros energéticos analizados.**
- **Balance energético elaborado.**
- **Línea de base establecida.**

### 4.5 Referencias

- Guía 14 de ASHRAE.
Fase III: Identificación y cálculo de Medidas de Mejora de Eficiencia Energética (MMEE)

La identificación de oportunidades de MMEE es la última fase de un diagnóstico energético. Como resultado se obtiene un listado de acciones a implementar para la reducción de consumos de energía que puede ser de gran utilidad a una IES.
5. Fase III: Identificación y cálculo de MMEE

La identificación de oportunidades de mejora de eficiencia y gestión energética es la última fase de un diagnóstico energético:

5.1 Selección de MMEE

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Descripción de la MMEE</th>
<th>Inversión</th>
<th>Página guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iluminación interior</td>
<td>Sustituir balastos electromagnéticos de ampolletas fluorescentes por balastos electrónicos</td>
<td>$$$</td>
<td>74</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Sustituir ampolletas existentes por ampolletas tipo LED</td>
<td>$$$</td>
<td>74</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Sustituir ampolletas fluorescentes convencionales por ampolletas fluorescentes eficientes</td>
<td>$</td>
<td>74</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Sustituir halógenos convencionales por halógenos eficientes</td>
<td>$</td>
<td>74</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Sustituir ampolletas incandescentes convencionales por ampolletas ahorradoras</td>
<td>$</td>
<td>73</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Instalar sistemas de aprovechamiento de la luz natural</td>
<td>$</td>
<td>75</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Instalar interruptores temporizados en aseos y detectores de presencia en pasillos y zonas de paso</td>
<td>$</td>
<td>75</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Reducir el número de lámparas de la sala</td>
<td>$</td>
<td>75</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Mantener las ampolletas limpias</td>
<td>$</td>
<td>76</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Eliminar obstáculos que dificulten la iluminación eficaz</td>
<td>$</td>
<td>76</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Apagar la luz al salir de una sala</td>
<td>$</td>
<td>76</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Encender solo las ampolletas que se vayan a necesitar</td>
<td>$</td>
<td>76</td>
</tr>
<tr>
<td>Iluminación interior</td>
<td>Aprovechar siempre que se pueda la luz natural existente</td>
<td>$</td>
<td>76</td>
</tr>
</tbody>
</table>

La identificación de oportunidades de mejora de eficiencia y gestión energética es la última fase de un diagnóstico energético:

Será importante considerar la relación costo-eficiencia de cada medida, tratando siempre de priorizar la implementación de MMEE que consigan grandes ahorros con bajas inversiones.
## FASE III: IDENTIFICACIÓN Y CÁLCULO DE MMEE

### Edificación

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Descripción de la MMEE</th>
<th>Inversión</th>
<th>Página guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edificación</td>
<td>Sustituir ventanas de vidrio simple por termopanel</td>
<td>$$$</td>
<td>93</td>
</tr>
<tr>
<td>Edificación</td>
<td>Sustituir puertas y marcos de ventanas</td>
<td>$$$</td>
<td>93</td>
</tr>
<tr>
<td>Edificación</td>
<td>Aislar elementos de la envolvente térmica</td>
<td>$</td>
<td>94</td>
</tr>
<tr>
<td>Edificación</td>
<td>Aislar los conductos</td>
<td>$</td>
<td>94</td>
</tr>
<tr>
<td>Edificación</td>
<td>Frenar la insolación directa con persianas venecianas, toldos o sombreadamientos</td>
<td>$</td>
<td>94</td>
</tr>
<tr>
<td>Edificación</td>
<td>Instalar cortinas de aire, puertas giratorias y cortinas blackout</td>
<td>$</td>
<td>94</td>
</tr>
<tr>
<td>Edificación</td>
<td>Aislar térmicamente fachadas y azoteas</td>
<td>$</td>
<td>94</td>
</tr>
<tr>
<td>Edificación</td>
<td>Mejorar el factor solar de superficies opacas y ventanas</td>
<td>$</td>
<td>95</td>
</tr>
<tr>
<td>Edificación</td>
<td>Instalar burletes en puertas y ventanas</td>
<td>$</td>
<td>94</td>
</tr>
<tr>
<td>Edificación</td>
<td>Mantener puertas y ventanas bien cerradas</td>
<td>$</td>
<td>95</td>
</tr>
<tr>
<td>Edificación</td>
<td>Avisar al responsable de un elemento en mal funcionamiento</td>
<td>$</td>
<td>95</td>
</tr>
</tbody>
</table>

### Equipos

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Descripción de la MMEE</th>
<th>Inversión</th>
<th>Página guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipos</td>
<td>Sustituir el computador de escritorio por notebook</td>
<td>$$$</td>
<td>99</td>
</tr>
<tr>
<td>Equipos</td>
<td>Sustituir la pantalla convencional del computador por LCD</td>
<td>$$$</td>
<td>99</td>
</tr>
<tr>
<td>Equipos</td>
<td>Sustituir el ascensor por uno de tracción vertical</td>
<td>$$$</td>
<td>99</td>
</tr>
<tr>
<td>Equipos</td>
<td>Instalar zapatillas programables o eliminadoras de stand-by</td>
<td>$</td>
<td>100</td>
</tr>
<tr>
<td>Equipos</td>
<td>Instalar sistemas de control de ascensores</td>
<td>$</td>
<td>100</td>
</tr>
<tr>
<td>Equipos</td>
<td>Instalar variadores de frecuencia en motores de ascensores</td>
<td>$</td>
<td>100</td>
</tr>
<tr>
<td>Equipos</td>
<td>Incorporar una política de compras de equipos eficientes</td>
<td>$</td>
<td>100</td>
</tr>
<tr>
<td>Equipos</td>
<td>Apagar los equipos tras su uso</td>
<td>$</td>
<td>101</td>
</tr>
<tr>
<td>Equipos</td>
<td>Utilizar impresoras y fotocopiadoras de forma razonable</td>
<td>$</td>
<td>102</td>
</tr>
<tr>
<td>Equipos</td>
<td>Configurar los equipos en modo ahorro</td>
<td>$</td>
<td>102</td>
</tr>
<tr>
<td>Equipos</td>
<td>Promover el cambio de uso del ascensor por escaleras</td>
<td>$</td>
<td>102</td>
</tr>
</tbody>
</table>

### Tabla 28: Listado de Medidas de Mejora de Eficiencia Energética de climatización y Agua Caliente Santaria.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Descripción de la MMEE</th>
<th>Inversión</th>
<th>Página guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatización y ACS</td>
<td>Cambiar la caldera por una más eficiente</td>
<td>$$$</td>
<td>82</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Sustituir enfriadoras o bombas de calor por equipos más eficientes</td>
<td>$$$</td>
<td>82</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Instalar un sistema de energía solar térmica para calefacción y ACS</td>
<td>$$$</td>
<td>82</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Instalar recuperadores de calor</td>
<td>$$$</td>
<td>83</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Cambiar el quemador de la caldera</td>
<td>$</td>
<td>82</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Instalar un sistema de freecooling</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Instalar variadores de frecuencia en bombas o torres de refrigeración</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Controlar el caudal de ventilación</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Realizar una mantención y limpieza periódica de los equipos de climatización y las bombas</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Controlar la temperatura de funcionamiento de las calderas, de los depósitos de acumulación y la temperatura de uso</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Instalar válvulas termostáticas</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Implementar un sistema de zonificación</td>
<td>$</td>
<td>84</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Reducir el caudal y la temperatura del agua para ACS con la implantación de dispositivos eficientes</td>
<td>$</td>
<td>87</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Mejorar el aislamiento del sistema de distribución y almacenamiento de ACS</td>
<td>$</td>
<td>87</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Regular la temperatura de acuerdo a las recomendaciones e informar a los usuarios</td>
<td>$</td>
<td>85</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Evitar las pérdidas de la climatización a través de la apertura de puertas y ventanas</td>
<td>$</td>
<td>86</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Eliminar los obstáculos que tapen los elementos terminales</td>
<td>$</td>
<td>85</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Utilizar elementos de sombra para aprovechar o frenar las ganancias solares</td>
<td>$</td>
<td>85</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>No desperdiciar el Agua Caliente Santaria (ACS)</td>
<td>$</td>
<td>88</td>
</tr>
<tr>
<td>Climatización y ACS</td>
<td>Vestir adecuadamente según la época del año</td>
<td>$</td>
<td>86</td>
</tr>
</tbody>
</table>

Tabla 29: Listado de Medidas de Mejora de Eficiencia Energética de edificación y equipos.
5.2 Cálculo del desempeño y el ahorro energético

- **Desempeño energético**: el ahorro de energía (kWh) que se conseguiría con la implementación de una medida determinada.

Si el ahorro se consigue mediante la reducción de la potencia, el cálculo del desempeño energético se obtiene multiplicando la diferencia entre la potencia inicial antes de aplicar la medida y la final después de aplicarla por el tiempo.

Si el ahorro se consigue mediante la reducción del tiempo de uso, el cálculo del ahorro energético se obtiene multiplicando la potencia por la reducción de tiempo conseguida.

5.3 MMEE en iluminación

5.3.1 Conceptos básicos

- **Inversión**: cuantifica el costo monetario necesario para la implementación de dicha medida de ahorro.

- **Ahorro económico**: consiste en describir en unidades monetarias (CLP) en lo que se traduce el ahorro de energía conseguido con dicha medida de ahorro.

\[
\text{Desempeño energético (kWh) = (Potencia inicial (W) - Potencia final (W)) \times Tiempo (h)}
\]

\[
\text{Ahorro económico (kWh) = Desempeño energético (kWh) \times Precio equipo (CLP) + Precio instalación (CLP)}
\]

- **Medidas que impican un recambio tecnológico**: medidas que implican recambio tecnológico.

5.3.2 Descripción de las MMEE en iluminación

A continuación se identifican las medidas más utilizadas en los sistemas de iluminación interior.

**Medidas que implican un recambio tecnológico**

- **Detector de presencia**: dispositivo encargado de conectar la iluminación cuando detecta la presencia de una persona en ese espacio.

- **Interruptores temporizados**: interruptor que, al pulsarlo, conecta en este caso la iluminación y está programado para apagarse de manera automática tras un tiempo establecido.

- **Célula fotoeléctrica**: dispositivo que, al detectar la luz natural, hace que la iluminación se mantenga apagada.

- **Dimmer**: dispositivo usado para regular el voltaje de una o varias ampolletas.

**Medidas que implican un recambio tecnológico**

1. **Sustituir ampolletas incandescentes convencionales por ampolletas ahorradoras**: entre otras sustituciones, se encuentran:
   - Ampolletas incandescentes de 40 W por ampolletas ahorradoras de 8 W.
   - Ampolletas incandescentes de 60 W por ampolletas ahorradoras de 15 W.
   - Ampolletas incandescentes de 100 W por ampolletas ahorradoras de 20 W.

2. **Sustituir halógenos convencionales por halógenos eficientes**: las ampolletas halógenas dicroicas estánndar tienen un consumo de 50 W, tamaño reducido y excelente calidad de luz y reproducción cromática, características que las hacen difíciles de reemplazar por otra tecnología. Sin embargo, recién se ha conseguido fabricar un tipo de halógenos que con las mismas características consumen un 60% respecto a las anteriores, conocidos como halógenos eficientes.

3. **Sustituir ampolletas fluorescentes convencionales por ampolletas fluorescentes eficientes**: en la actualidad es posible encontrar en el mercado un tipo de tubos fluorescentes con una eficiencia mayor que la de los de tipo convencional. Los fluorescentes tipos T10, T8 y T5 de última generación conservan el mismo nivel de iluminación (mismo número de luminas) pero emplean una menor cantidad de energía.

La mayor ventaja que presentan es que pueden ser sustituidos por los tubos fluorescentes actuales sin tener que cambiar la luminaria, por lo que el único costo asociado es el de la compra de la nueva ampolleta.

4. **Sustituir por ampolletas tipo LED**: esta posibilidad supone el mayor ahorro dado la eficiencia de la tecnología LED. Además la vida útil de este tipo de ampolleta es muy superior al resto, alcanzando las 50.000 horas de funcionamiento y son regulables en potencia sin afectar a la vida de la ampolleta.

5. **Sustituir balastos electromagnéticos por balastos electrónicos**: los nuevos balastos suponen una ventaja, ya que permiten aumentar la vida útil de tubo, evitar parpadeos o efecto estroboscópico, permiten regular el valor de iluminación, reduce el consumo, entre otros.
El sistema principal de iluminación interior de un edificio de uso educativo, ubicado en Santiago, está formado por 335 tubos fluorescentes T10 de 40 W montados en luminarias abiertas de tipo sobrepuesta. El equipo auxiliar que permite el funcionamiento de los tubos fluorescentes es un balasto electromagnético (uno por tubo) con pérdidas de 6 W.

La propuesta permite la sustitución sencilla de los tubos. El procedimiento es el siguiente:

1. Corte del suministro eléctrico.
2. Retirada del tubo T10 y del par de adaptadores que permiten la compatibilidad con el tubo T10. Los adaptadores incluyen la función de balasto electrónico.
3. Montaje del conjunto tubo T5 más los correspondientes adaptadores.

Cálculo justificativo:
Se tiene datos del levantamiento del sistema de iluminación y se ha estimado el número de horas de funcionamiento de cada sala del edificio. La potencia instalada en el sistema existente es de 46 W por tubo, correspondientes a la potencia del tubo T10 (40 W) más la del balasto (6 W).

La potencia propuesta para instalar en el sistema es de 29 W por tubo, correspondientes a la potencia del tubo T5 (28 W) más las pérdidas de la electrónica (1 W).

La energía consumida por el sistema de iluminación se calcula por medio de la siguiente ecuación:

$$Energía (kWh/año) = \text{Potencia unitaria (kW/U) x Tubos (U) x Tiempo (h/año)}$$

Aplicando la ecuación a los datos conocidos se obtienen las columnas de "Energía Inicial" y "Energía Propuesta". El ahorro se calcula por medio de la siguiente ecuación:

$$Ahorro (kWh/año) = \text{Energía Inicial (kWh/año) - Energía Propuesta (kWh/año)}$$
5.4 MMEE en sistemas de climatización y ACS

5.4.1 Conceptos básicos

- Freecooling: sistema de enfriamiento gratuito que permite enfriar el aire interior gracias a las menores temperaturas del aire exterior.
- Válvulas termostáticas: sirven para controlar la temperatura que emiten los elementos terminales.

Para más información se puede consultar el documento "Sistemas eficientes de climatización y uso de energías renovables" publicado en la Fundación de la Energía de la Comunidad de Madrid: http://www.fenercom.com/pages/publicaciones/libros-y-guias-tecnicas.php
5.4.2 Descripción de las MMEE en climatización y ACS

**CLIMATIZACIÓN**

A continuación se describen las medidas que se emplean con mayor frecuencia en sistemas de climatización:

- **Medidas que implican un recambio tecnológico**:

  1. **Cambiar la caldera por una más eficiente**
  2. **Sustituir enfriadoras o bombas de calor**
  3. **Cambiar el quemador de la caldera**
  4. **Instalar un sistema de energía solar térmica para calefacción**
  5. **Instalar recuperadores de calor**
  6. **Aislar las conducciones**
  7. **Realizar la limpieza o mantenimiento periódico de las calderas o chillers**
  8. **Instalar un sistema de freecooling**
  9. **Instalar válvulas termostáticas**
  10. **Instalar un sistema de zonificación**

**Medidas de gestión**

- **Reducir las pérdidas energéticas**
- **Adecuar la climatización a la demanda**
- **Instalar un sistema de energía solar térmica**
- **Instalar válvulas termostáticas**
- **Instalar un sistema de freecooling**
- **Instalar válvulas termostáticas**
- **Instalar un sistema de zonificación**
- **Controlar la temperatura de funcionamiento de la caldera o chiller**
- **Controlar la temperatura de los sistemas de climatización**
- **Instalar un sistema de recuperación de calor**
- **Controlar el caudal de ventilación**

Las medidas que se utilizan con mayor frecuencia son:

1. **Cambiar la caldera por una más eficiente**: con el cambio de la caldera convencional por una de baja temperatura o de condensación se pueden alcanzar ahorros entre un 15 y un 60 %, por lo que su elevado costo se amortiza rápidamente.

2. **Sustituir enfriadoras o bombas de calor**: sustituir las bombas de calor convencionales por bombas de calor de alto rendimiento, o bombas geotérmicas, con lo que puede obtenerse ahorros de un 20% en el consumo de energía.

3. **Cambiar el quemador de la caldera**: instalar quemadores modulantes que permitan ajustar el aporte de calor de la caldera a la demanda real.

4. **Instalar un sistema de energía solar térmica para calefacción**: un sistema de energía solar térmica permite abastecer una parte de la demanda de energía con importantes ahorros y reducciones de la contaminación.

Las medidas que se utilizan con mayor frecuencia son:

1. **Instalar recuperadores de calor**: otra medida interesante puede ser la instalación de un recuperador entalpico en las unidades de tratamiento de aire. Con este sistema se aprovecha el calor del aire extraído para transmitirlo al aire impulsado, aumentando el rendimiento total del sistema.

2. **Aislar conducciones**: el aislamiento de las conducciones permite evitar pérdidas térmicas al ambiente. Se trata de una medida sencilla de implementar y de bajo costo.

3. **Realizar un mantenimiento y limpieza periódicos de los equipos de climatización**: ejecutar un mantenimiento preventivo de los equipos mediante la limpieza de los filtros y garantizando el aislamiento de los mismos.

4. **Instalar un sistema de freecooling**: se basa en utilizar la capacidad de enfriamiento del aire exterior para enfriar el aire interior de una sala. Pueden lograrse ahorros de hasta un total del 18%.

5. **Controlar la temperatura de funcionamiento de las calderas**: consiste en ajustar la temperatura de impulsión de calefacción en base a la temperatura exterior, especialmente en épocas climáticas suaves (primavera y otoño), cuando las necesidades de calefacción son menores y se puede reducir la temperatura del agua que va a los radiadores.

6. **Instalar válvulas termostáticas**: se trata de dispositivos mecánicos que facilitan al usuario mantener las salas a una temperatura determinada, controlando de este modo, la demanda de climatización.

7. **Implantar un sistema de zonificación**: se divide la instalación por zonas y se controlan los equipos de climatización. Permiten obtener temperaturas diferentes para cada zona con el mismo sistema de climatización, ofreciendo ahorros de hasta el 50% de la potencia instalada, y controlar y zonificar el apagado / encendido de los equipos y el valor de temperatura, ajustando el consumo a las necesidades reales del edificio.

8. **Instalar variadores de frecuencia en bombas o torres de refrigeración**: se trata de dispositivos mecánicos que posibilitan al usuario mantener las salas a una temperatura determinada, controlando de este modo, la demanda de climatización.

9. **Controlar el caudal de ventilación**: un exceso de ventilación supone un aumento del consumo en
climatización, ya que el aire nuevo que se introduce en un edificio debe tratarse. Por esta razón, lo ideal es que el caudal de aire nuevo sea el óptimo para mantener las condiciones higiénicas, a menos que se utilice el sistema freecooling.

El caudal óptimo dependerá fundamentalmente de la ocupación del edificio. En los edificios cuya ocupación varíe mucho a lo largo del día resulta muy interesante que el caudal de ventilación dependa de la calidad del aire, para eso se pueden instalar sondas de CO₂.

2. Utilizar elementos de sombra de las ventanas para aprovechar o frenar las ganancias solares: dependiendo de las necesidades de cada época del año interesa aprovechar las ganancias de calor aportadas por el sol, o, en cambio, evitarlas. Para ello se deben emplear los elementos que existen en el envolvente del edificio para dar sombra y evitar así las ganancias del sol o para aprovechar al máximo las ganancias solares. Las oportunidades de mejora relacionadas con la envolvente térmica se detallan en el apartado de MMEE en edición de esta guía.

3. Regular la temperatura de acuerdo a las recomendaciones del Instituto para la Diversificación y el Ahorro de la Energía (IDAE) (21 °C en invierno y 26 °C en verano) e informar a los usuarios: estos valores perfectamente satisfacen el estado de confort del usuario y tienen un consumo eficiente. El IDAE estima que el consumo de los equipos de climatización en verano se incrementa un 8% por cada grado por debajo de los 26 °C y un 7% por cada grado por encima de los 21 °C en invierno.


5. Evitar las pérdidas de la climatización a través de la apertura de puertas y ventanas: conservar la climatización dentro de un recinto las puertas y ventanas deberán permanecer cerradas el mayor tiempo posible.

Medidas de gestión

1. Reducir el caudal y la temperatura del agua con la implementación de dispositivos eficientes: utilización de llaves de lavamanos con pulsador, detectores de manos y perlizadores50 (dispositivo ahorrador de agua cuyo funcionamiento se basa en la mezcla de agua con aire produciendo un chorro abundante y suave generando un ahorro de hasta un 50% de agua y energía).

2. Mejorar la aislación del sistema de distribución y almacenamiento de agua caliente sanitaria: las conducciones deberán estar bien aisladas, así como el depósito de acumulación de ACS para reducir al mínimo las pérdidas que se puedan producir por conducción. Se trata de una medida sencilla de implementar y de bajo coste.

48


Las medidas de ahorro de recambio tecnológico que se emplean con mayor frecuencia en ACS son:

1. Aumentar el rendimiento de los equipos con la utilización de calderas de alta eficiencia: con el cambio de la caldera convencional por una de baja temperatura o de condensación51 se pueden alcanzar ahorros entre un 15 y un 60, por lo que su elevado coste se amortiza rápidamente. También se recomienda el cambio de combustible, de caldera de carbón o gasóleo a caldera de gas natural.

2. Instalar placas solares térmicas como apoyo a un sistema de caldera: un sistema de energía solar térmica permite abastecer una parte de la demanda de energía con importantes ahorros.

El IDAE estima que el consumo de los equipos de climatización dentro de un recinto las puertas y ventanas deberán permanecer cerradas el mayor tiempo posible.

Por último, también es importante la adopción de hábitos de uso responsable de las instalaciones, para lo cual se recomienda:

1. Eliminar los obstáculos que tapen los elementos terminales: se debe evitar siempre cubrir con muebles los elementos terminales u otros obstáculos que puedan dificultar la transmisión de calor.


49
3. Fijar una adecuada temperatura en los depósitos de acumulación y la temperatura de uso: por cada grado que se ajuste la temperatura se conseguirá reducir el consumo aproximadamente un 7%. El IDAE además recomienda en la “Guía práctica sobre instalaciones individuales de calefacción y Agua Caliente Sanitaria (ACS) en edificios de viviendas” una temperatura de entre 55 y 60°C en el depósito de acumulación y si la producción es instantánea, entre 30 y 35°C.

4. Mantener una adecuada mantención y revisión de las bombas: una mantención preventiva adecuada ayudará a detectar las anomalías y reducirá las pérdidas de calor que puedan producirse por un mal funcionamiento de los equipos.

5.4.3 Situación en el sector de las Instituciones de Educación Superior (IES)

Los sistemas de climatización utilizados en los edificios de las IES son muy variados:
- Calderas.
- Chillers.
- Splits.
- Radiadores eléctricos.
- Estufas de leña.
- Estufas de gas.

Algunos edificios no disponen de un sistema de calefacción formal o permanente. En estos casos se recurre al uso de termoventiladores eléctricos o estufas de gas licuado portátiles.

A continuación se incluye un ejemplo de identificación y cálculo de MMEE en climatización en una IES:

**Caso práctico**

**MMEE CLIMATIZACIÓN EN UN CAMPUS DE TEMUCO**

*Situación:* La caldera que suministra agua caliente para calefacción a dos edificios de un campus de Temuco, está equipada con un quemador de diesel.

*Propuesta de mejora:* Se propone la sustitución del quemador de diesel por un quemador de gas licuado, de manera que el proceso de combustión será más eficiente por la utilización de un combustible gaseoso en lugar de un combustible líquido. El resultado del consumo energético del sistema de calefacción será menor.

*Cálculo justificativo:* Se conoce el consumo actual de combustible diesel para calefacción ($112,040$ litros/año). Se toma el valor del poder calorífico inferior (PCI) del combustible diesel ($10,01$ kWh/litro) para obtener la energía consumida ($1,121,520$ kWh/año), siguiendo la siguiente ecuación:

$$\text{Energía [kWh/año]} = \text{Volumen [litros/año]} \times \text{PCI [kWh/litro]}$$

A través de los análisis de gases de combustión que se efectúan periódicamente, se conoce el rendimiento actual del proceso de combustión de la caldera equipada con quemador diesel. Dicho rendimiento asciende al 89%.

Conocido el rendimiento, se puede calcular el calor que entrega el quemador:

$$\text{Calor [kWh/año]} = \text{Energía [kWh/año]} \times \text{Rendimiento}$$

El quemador diesel entrega $998,135$ kWh/año, necesarios para satisfacer la demanda de calefacción de los edificios.

Se estima que el rendimiento del proceso de combustión mejorará en un 4% por la utilización de gas licuado en lugar de diesel, de manera que el rendimiento final alcanzará un 93%.

$$\text{Calor [kWh/año]} = \text{Energía [kWh/año]} \times \text{Rendimiento final}$$

El quemador de gas licuado consumirá $1,061,846$ kWh/año.

Satisfaciendo la misma demanda térmica, el quemador de gas licuado consumirá $1,061,846$ kWh/año.
5.5 MMEE en sistemas de edificación

**ENVELOPTE TÉRMICA**

5.5.1 Conceptos básicos

- **Envolvente térmica**: se compone de los cerramientos del edificio que lo protege de las condiciones climáticas externas.
- **Termopanel**: sistema de dos o más vidrios herméticamente sellados.
- **Burletes**: material que se instala para evitar infiltraciones por las ventanas.
- **Factor solar**: cociente entre la cantidad de energía que entra a través de un vidrio y la energía solar exterior incidida. A menor factor solar menores serán las ganancias de calor.

5.5.2 Descripción de las MMEE en edificación

Las medidas de ahorro en edificación están enfocadas principalmente a disminuir la demanda de calefacción y refrigeración. Esto se conseguirá mediante la reducción de pérdidas generadas a través de la envolvente térmica del edificio, o con el aumento del rendimiento energético de los sistemas de calefacción y refrigeración.

El ahorro energético vendrá determinado por la diferencia de consumo entre diesel y gas licuado:

\[
\text{Ahorro} = \text{Energía diesel} - \text{Energía gas}
\]

59.674 kWh/año = 1.121.520 kWh/año - 1.061.846 kWh/año

Resultados:
El ahorro económico es función del ahorro energético y la diferencia de costo de los combustibles:

\[
\text{Ahorro económico} = \frac{\text{Ahorro}}{\text{Costo diesel} - \text{Costo gas}}
\]

Se conoce el costo de los combustibles (valor de referencia promedio de consumos reales de 2012):

- Diesel: 612 $/litro
- Gas licuado: 712 $/kg

Utilizando los factores de conversión 10,01 kWh/litro para el diesel y 13,11 kWh/kg para gas licuado, se obtiene:

- Diesel: 61,1 $/kWh
- Gas licuado: 53,3 $/kWh

Finalmente:

\[
13.527.480 \text{ $/año} = 1.121.520 \text{ kWh/año} \times 61,1 \text{ $/kWh} - 1.031.846 \text{ kWh/año} \times 53,3 \text{ $/kWh}
\]
**FASE III: IDENTIFICACIÓN Y CÁLCULO DE MMEE**

*Agencia Chilena de Eficiencia Energética*  

**16. Reducción de infiltraciones**

Son medidas de gestión que reducen las pérdidas asociadas a las infiltraciones de aire del exterior.

- Sustitución por carpinterías de madera, elección de materiales de construcción.
- Adición de aislamiento exterior o interior en la envolvente del edificio.
- Adición de poliestireno expandido o lana de vidrio.
- Adición de aislante en la azotea. Este deberá contar con normalidad al mejor aislante que se encuentre el edificio.
- Instalación de una doble ventana, que genere una mayor eficiencia en el calefactor y evitar las infiltraciones de aire exterior. El aislamiento de tuberías ayuda a ahorrar dinero, no sólo por evitar la pérdida de calor sino también por proteger las tuberías contra el agua de condensación, la corrosión y los daños mecánicos.
- Adición de aislamiento en pisos de una capa flexible que se coloca en el canto de las hojas de puertas o ventanas para que cierren herméticamente y evitar las infiltraciones de aire del exterior.
- Adición de cortinas de aire, puertas giratorias y cortinas blackout.
- Instalación de cortinas opacas y fachadas solar de superficies no opacas.
- Mejora del factor solar de las ventanas, ya que además de ser opacas a la radiación infrarroja, minimizan la incidencia que tiene la luz solar y son capaces de reducir la entrada de calor en el edificio hasta un 55% en verano, y reducir sus pérdidas hasta un 20% en invierno.

A continuación se nombran las medidas que se emplean con mayor frecuencia en edificación:

- **Medidas de reducción de infiltraciones**

  - Sustitución por carpinterías de madera, elemento que disminuye la transmitancia térmica hacia el exterior.
  - Adición de aislamiento exterior o interior en la envolvente del edificio.
  - Instalación de una doble ventana, que genere una cámara de aire interna. Esta medida evita gran parte del flujo térmico entre el interior y el exterior de un edificio.

Para mayor información sobre ventanas eficientes el Departamento de Energía de los Estados Unidos ha publicado una guía: “Guide to Energy Efficient Windows”.

- **Medidas de gestión**

  1. **Instalación de cortinas de aire, puertas giratorias y cortinas blackout:** Evitan que el aire caliente del ambiente exterior. El aislamiento de tuberías ayuda a ahorrar dinero, no sólo por evitar la pérdida de calor sino también por proteger las tuberías contra el agua de condensación, la corrosión y los daños mecánicos.
  2. **Aislante térmico de fachadas y azoteas:** Común para aislante que disminuya las pérdidas a través de este elemento.
  3. **Aislamiento térmico de fachadas y azoteas:** Requiere un uso adecuado de la envolvente y tengan hábitos de uso responsable.
  4. **Mantenir puertas y ventanas correctamente cerradas:** A menudo, las ventanas y ventanas del edificio quedan perfectamente cerradas: una ventana que no cierre correctamente será una fuente de pérdidas energéticas muy importante. Es necesario revisar que todas las puertas y ventanas del edificio sean perfectamente cerradas.
  5. **Adopción de hábitos de uso responsable**

Avisar al responsable si cualquier elemento de la envolvente mencionado en los puntos anteriores no funcionan con normalidad: de la misma forma que en el punto anterior una ventana mal cerrada es una fuente de pérdidas energéticas, una falla en cualquier elemento de la envolvente también dará lugar a importantes pérdidas energéticas y será necesario repararlo con urgencia.

---

5.5.3 Situación en el sector de las Instituciones de Educación Superior (IES)

Es habitual que los cerramientos transparentes estén compuestos por vidrios simples en marcos de aluminio sin rotura de puente térmico.

No es habitual la utilización de elementos de sombreado exterior en las fachadas más expuestas a la insolación. En estas ubicaciones, la tendencia es mitigar la radiación solar por medio de cortinas y persianas interiores.

A continuación se incluye un ejemplo de identificación y cálculo de MMEE en edificación en las IES:

<table>
<thead>
<tr>
<th>Caso práctico</th>
<th>MMEE EDIFICACIÓN EN UNA IES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situación:</td>
<td>Las paredes laterales de las instalaciones de la piscina temperada de una Institución de Educación Superior no disponen de aislamiento térmico.</td>
</tr>
<tr>
<td>Propuesta de mejora:</td>
<td>Se propone instalar un sistema de aislamiento térmico por el exterior de estas paredes con el fin de reducir las pérdidas de calor.</td>
</tr>
<tr>
<td>Cálculo justificativo:</td>
<td>Se considera que la transmitancia térmica de los muros sin aislamiento tiene un valor de 1,6 W/m²K</td>
</tr>
<tr>
<td></td>
<td>Utilizando un sistema basado en panel rígido de poliestireno expandido de 40 mm de espesor, el muro renovado alcanza un valor de transmitancia térmica de 0,58 W/m²K</td>
</tr>
<tr>
<td></td>
<td>Los muros pendientes de aislar tienen una superficie total de 700 m²</td>
</tr>
<tr>
<td></td>
<td>Se toman 15K como diferencia entre la temperatura interior y exterior.</td>
</tr>
<tr>
<td></td>
<td>Las pérdidas térmicas, en términos de potencia, se calculan mediante la siguiente ecuación:</td>
</tr>
</tbody>
</table>

\[
\text{Pérdidas (W)} = U \cdot \text{W/(m² K)} \times A \cdot \Delta T \ [\text{K}]
\]

Se considera un periodo de funcionamiento de seis meses (4.320 horas), durante el cual se mantiene la piscina temperada utilizando un sistema de calefacción.

![Caso práctico MMEE EDIFICACIÓN EN UNA IES](image)

En este caso las pérdidas antes y después de la ejecución del sistema de aislamiento térmico serían:

<table>
<thead>
<tr>
<th>Situación</th>
<th>Sin aislamiento térmico</th>
<th>Con aislamiento térmico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pérdidas (W)</td>
<td>16.800</td>
<td>6.090</td>
</tr>
<tr>
<td>Energía (kWh)</td>
<td>72.576</td>
<td>26.309</td>
</tr>
</tbody>
</table>

El ahorro resultante es de 46.267 kWh anuales.

Resultados:
Se parte del conocimiento del costo de la energía (79,71 $/kWh) y de la instalación del aislamiento térmico (30.300 $/m²)

<table>
<thead>
<tr>
<th>Energía Inicial kWh/año</th>
<th>Energía Propuesta kWh/año</th>
<th>Ahorro energético kWh/año</th>
<th>Ahorro económico $/año</th>
<th>Inversión $</th>
<th>PRD años</th>
</tr>
</thead>
</table>

5.6 MMEE en equipos

5.6.1 Conceptos básicos

- **Factor de carga:** valor que tiene en cuenta el tiempo que el equipo funciona realmente al 100% de su potencia.
- **Variador de frecuencia:** sistema que controla la velocidad de funcionamiento de un motor a través de la variación de la energía que alimenta al motor.
- **Consumos “vampiro”:** consumo de energía de los equipos cuando no están en funcionamiento, solo por estar enchufados.

5.6.2 Descripción de las MMEE en equipos

Bajo el término equipo se incluye una variedad de los mismos, ya sean equipos ofimáticos, electrodomésticos, entre otros, pero también se puede estar haciendo referencia a otros equipos como pueden ser los ascensores.

Se incluyen en este apartado todos aquellos elementos consumidores de energía que no se incorporan dentro de los sistemas de iluminación, climatización y ACS.

El ahorro en equipos debe orientarse a reducir los factores que influyen en el consumo de energía: potencia instalada y tiempo de utilización de los equipos.
1. **Sustituir equipos por otros eficientes:**
- Sustitución del computador de escritorio por un notebook. Esta opción reduce el consumo de manera importante. Se estima que un computador portátil consume alrededor de la mitad de energía que un computador de escritorio de las mismas características17.
- Sustitución de la pantalla convencional del equipo computacional por una pantalla LCD. Esta tecnología proporciona alta resolución y ofrece ahorros de un 37% en funcionamiento y un 40% en modo stand-by18.
- Sustitución del ascensor eléctrico de tracción o el hidráulico por un ascensor de tracción vertical, que funciona por efecto imán con frecuencia y tensión variables, proporcionando un arranque y parada suave. Además, al no utilizar sistema de engranajes se evitan pérdidas por rozamiento, se necesita un espacio para la cabina de menor tamaño y se reduce hasta 10 veces el ruido. Con estas medidas se pueden obtener ahorros entre un 25% y un 40% frente a los ascensores eléctricos de tracción y hasta un 60% frente a los hidráulicos.

2. **Instalar sistemas reguladores en ascensores:** sistemas de control en ascensores, que proporcionan un uso eficiente gracias a que detectan el ascensor más cercano al punto que esté siendo solicitado y el sentido ascendente o descendente en que se está moviendo.

3. **Incorporar elementos que aumenten el rendimiento de la instalación:** instalar variadores de frecuencia en el motor del ascensor altera la frecuencia de alimentación y la tensión en la misma proporción, manteniendo constante el flujo magnético de la máquina. De esta forma los ascensores arrancan y frenan progresivamente reduciendo el máximo de consumo del motor. Pueden proporcionar ahorros entre un 3% y un 35%.

4. **Definir una política de compras de equipos eficientes:** una importante medida de ahorro se basa en la incorporación de criterios de eficiencia energética en la compra de equipos.

El sistema de etiquetado usa una escala de 7 clases identificadas por una letra que va desde A para los artefactos más eficientes hasta la letra G para aquellos de menor nivel de eficiencia energética.

---

17 Fuente: Energy Star
18 Fuente: Instituto para la Diversificación y Ahorro de la Energía (IDAE)
19 Consumo vampiro: energía que emplean los equipos eléctricos cuando no están en uso pero sí están conectados al enchufe. (Ministerio de Energía del Gobierno de Chile)
5.6.3 Situación en el sector de las Instituciones de Educación Superior (IES)

Los equipos más habituales en las IES son los computadores, tanto en salas de clase y laboratorios con fines educativos, como en oficinas de carácter administrativo. En general, los computadores son de tipo escritorio, aunque es común observar equipos notebook, normalmente asignados a personal académico e investigador.

Otros equipos tecnológicos frecuentes son los data-show y las impresoras. Las facultades de perfil científico disponen de laboratorios por lo que, en ocasiones, la carga energética atribuible a equipos de laboratorio es importante.

A continuación se nombran las medidas que se emplean con mayor frecuencia:

1. Apagar los equipos cuando no se estén utilizando: en el caso de los computadores, se deberán desconectar tanto la unidad central como la pantalla.

2. Utilizar los equipos tales como impresoras o fotocopiadoras de forma razonable: se recomienda imprimir y fotocopiar a doble cara o imprimiendo varias páginas por hoja y evitar imprimir e-mails.

3. Configurar los equipos de oficina en modo ahorro: configurar el computador en modo suspensión o hibernación para que se apaguén tras un tiempo sin utilizarlos y dejen de consumir energía. También se puede reducir el consumo de la pantalla y de las impresoras.

4. Sensibilizar a los usuarios de las instalaciones sobre la importancia del uso de los ascensores de un modo racional, eligiendo las escaleras siempre que sea posible; además de reducir el consumo energético de los ascensores se estará incorportando un hábito saludable para los usuarios del establecimiento educacional.

A continuación se incluye un ejemplo de identificación y cálculo de MMEE en equipos de oficina en las IES:

### Caso práctico

#### MMEE EQUIPOS DE OFICINA EN UN CAMPUS DE SANTIAGO

#### Situación:

Un pequeño campus en Santiago está dotado con 123 computadores de escritorio, distribuidos entre salas de clase, laboratorios, biblioteca y oficinas.

Los computadores tienen una potencia instalada de 160 W, sin considerar el monitor.

#### Propuesta de mejora:

La propuesta de mejora de la eficiencia energética consiste en la sustitución de 80 de los computadores actuales por equipos “thin client”. Un “thin client” es un pequeño computador diseñado para funcionar en red, conectándose un computador de manera remota, así el grueso del esfuerzo de cómputo es realizado por un servidor. Estos equipos no tienen partes móviles (disco duro, ventilador) y su consumo energético es significativamente inferior a los PC convencionales.

Determinados usos informáticos que no exigen gran potencia de cálculo permiten la implementación de los sistemas basados en “thin client”, como navegación por internet, consulta de correo electrónico, procesadores de texto u hojas de cálculo.

#### Cálculo justificativo:

Se conoce el catastro de computadores, la potencia de los equipos y la estimación del número de horas de funcionamiento:

<table>
<thead>
<tr>
<th>Equipo</th>
<th>PC</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usuario</td>
<td>Alumnos</td>
<td>Funcionarios</td>
</tr>
<tr>
<td>Cantidad (Ud)</td>
<td>100</td>
<td>23</td>
</tr>
<tr>
<td>Potencia (W)</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Funcionamiento (h/año)</td>
<td>1.000</td>
<td>1.800</td>
</tr>
<tr>
<td>Energía (kWh)</td>
<td>16.000</td>
<td>6.624</td>
</tr>
</tbody>
</table>

El consumo actual correspondiente a los computadores es de 22.624 kWh.
Se propone la sustitución de 60 de los computadores accesibles a los alumnos y 20 computadores de funcionarios por terminales “thin client” con un consumo de 9 W.

Según la propuesta de MMEE, el consumo energético correspondiente a los computadores será de 8.128 kWh, resultando un ahorro energético de 14.496 kWh (64%).

Resultados:
Considerando un costo de la electricidad de 80,35 $/kWh y el costo de los equipos de 280.000 $/ud, resulta:

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Energía inicial kWh/año</th>
<th>Energía propuesta kWh/año</th>
<th>Ahorro energético kWh/año</th>
<th>Ahorro energético %</th>
<th>Ahorro económico $/año</th>
<th>Inversión $</th>
<th>PRS* años</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Alumnos</td>
<td>22.624</td>
<td>8.128</td>
<td>14.796</td>
<td>64%</td>
<td>1.188.859</td>
<td>22.400.000</td>
<td>18,8</td>
</tr>
<tr>
<td>PC Funcionarios</td>
<td>6.400</td>
<td>540</td>
<td>864</td>
<td>64%</td>
<td>1.188.859</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Thin Client Alumnos</td>
<td>6.400</td>
<td>1.000</td>
<td>640</td>
<td>64%</td>
<td>1.188.859</td>
<td>864</td>
<td>324</td>
</tr>
<tr>
<td>Thin Client Funcionarios</td>
<td>6.400</td>
<td>1.800</td>
<td>720</td>
<td>64%</td>
<td>1.188.859</td>
<td>1.800</td>
<td>324</td>
</tr>
</tbody>
</table>

Se observa que el PRS supera la vida útil del equipo. Sin embargo el enfoque más adecuado en este caso sería considerar el sobrecosto de la utilización de equipos “thin client.” Esta estrategia podría permitir la reducción del costo de la renovación de los computadores.

5.7 Metodología de Medición y Verificación (M&V) de MMEE

La ejecución de una Medida de Mejora de la Eficiencia Energética (MMEE) no implica necesariamente obtener los resultados previstos por el proyectista de la medida. Para realizar los cálculos de las MMEE se determinan ciertos parámetros que pueden variar durante el periodo de vigencia de la propia MMEE.

Evaluar el resultado final de una MMEE mediante observaciones simples como la diferencia entre el consumo energético del año anterior y posterior a la aplicación de la MMEE puede dar lugar a conclusiones erróneas.

Un ejemplo habitual es el de un edificio que recibe una MMEE de su sistema de calefacción, siendo el año anterior climatológicamente muy benigno, y el posterior muy duro. La comparación de consumos de años consecutivos (sin corregir el efecto de variación climatológica) puede ofrecer un resultado que indique que la MMEE lejos de conseguir su objetivo, ha empeorado la situación.

Queda así de manifiesto la necesidad de utilizar una metodología más compleja para evaluar el resultado real de las MMEE, lo que lleva al concepto de Medición y Verificación.

La Medición y Verificación (M&V) es un proceso que consiste en utilizar la medida para establecer de forma fiable el ahorro real generado en una instalación dentro de un programa de gestión de la energía.

La principal ventaja de utilizar M&V es obtener una medida verificada los ahorros generados por la instalación energética después de aplicada la Medida de Mejora Eficiencia Energética.

Se pueden utilizar las técnicas de Medición y Verificación con los siguientes fines:

- Incrementar el ahorro de energía.
- Referencia para la realización de los pagos.

- Mejorar el financiamiento del proyecto de eficiencia.
- Mejora del diseño, explotación y mantenimiento de las instalaciones.
- Gestión de los presupuestos de gasto energético.
- Mejora el valor de los créditos de la reducción de emisiones.
- Hacer comprender a la sociedad que la gestión de la energía es una herramienta prioritaria.

Con el fin de formalizar el proceso de M&V se ha de redactar el correspondiente Plan de M&V que, generalmente, responde a las directrices marcadas por un protocolo de M&V.

Un protocolo de M&V es una guía y procedimiento sistematizado y detallado para determinar Ahorro real de una instalación energética. Algunos protocolos utilizados a nivel internacional son los siguientes:


Un plan de M&V es un conjunto de medidas de Eficiencia Energéticas sometidas a evaluación bajo un criterio determinado a través de un protocolo de M&V con el fin de determinar el ahorro real después de aplicar las medidas de Eficiencia Energética.


Para mayor información consultar el documento de referencia: IPMVP Volumen I, EVO 10000 – 1.2010 (E1).

Dado que un plan de Medición y Verificación (M&V) debe diseñarse específicamente para cada una de las MMEE, se presenta un ejemplo correspondiente a una MMEE en un sistema de generación de calor.
En el ejemplo aparecen los siguientes conceptos:

**Opción del IPMVP**: el IPMVP ofrece cuatro opciones para determinar el ahorro: A, B, C y D. Para seleccionar una de ellas hay que tener en cuenta diversos aspectos, como por ejemplo, dónde se establece el límite de medida.

**Límite de medida**: límite conceptual que se establece alrededor de los equipos o sistemas para separar los hechos que son relevantes en la determinación del ahorro de los que no lo son.

**Efecto cruzado**: efecto sobre la energía creado por una MMEE pero que no son medidos dentro del límite de medida.

**Período de referencia**: tiempo seleccionado que representa el funcionamiento de la instalación o sistema antes de la implementación de una MMEE.

**Variables independientes**: parámetros que se espera que cambien de forma regular en el tiempo y que tengan un impacto medible sobre el consumo de energía de un sistema o de una instalación.

**Factores estáticos**: características de la instalación que afectan al consumo dentro del límite de medida, pero que no sirven de base para ningún ajuste rutinario. Entre ellas se incluyen las características fijas, medioambientales, operacionales y de mantenimiento.

**Período demostrativo**: periodo que sigue a la implementación de una MMEE cuando los informes de ahorro se adhieren al IPMVP.

### 5.7.1 Ejemplo de plan de M&V sobre MMEE en un sistema de generación de calor

El protocolo IPMVP indica en su Capítulo 5 los contenidos que debe tener un buen Plan de M&V. A continuación se completan dichos epígrafes tomando un caso de MMEE real consistente en la sustitución de un equipo por otro más eficiente.

**Objetivo de la MMEE**: En la actualidad se dispone de un sistema de calefacción basado en una caldera con quemador de combustible diesel. La MMEE consiste en la sustitución del quemador de diesel por un quemador de gas licuado, consiguiendo una mejora del rendimiento del proceso de combustión.

**Variables independientes**: una variable independiente es un parámetro del que se sabe que va a cambiar de forma regular en el tiempo y que va a tener un impacto significativo sobre el consumo de un sistema. La única variable independiente que se toma en consideración en este caso, es el demanda térmica de calefacción.

El protocolo IPMVP indica que para cada MMEE será necesario analizar el periodo de referencia de 12 meses, de manera que se pueda observar un ciclo completo del funcionamiento del sistema de calefacción.

**Base para el ajuste**: Se toma el enfoque de "consumo de energía evitado", de manera que se aplicarán las condiciones de tiempo de funcionamiento del periodo demostrativo de ahorro al periodo de referencia.

**Procedimiento de análisis**: Medición de la línea base: en base a las mediciones correspondientes al periodo de referencia se determina un modelo matemático que permite calcular el consumo del quemador original ante diversas condiciones de demanda térmica.

La demanda térmica de calefacción se mide por medio de un contador de calor. Este instrumento mide simultáneamente la diferencia de temperatura entre la impulsión y el retorno del circuito de calefacción y el propio caudal de dicho circuito. La demanda térmica de calefacción durante el periodo de referencia es de 930.530 kWh.

**Factores estáticos**: se considera que las temperaturas de impulsión y retorno del circuito de calefacción y las condiciones de la sala de calderas y chimenea no cambian en el tiempo. Los posibles cambios que experimenten estas variables tienen que ser monitorizados durante todo el periodo demostrativo de ahorro.

**Condiciones de referencia que no cumplen condiciones requeridas**: no aplica.

**Medición de la línea de referencia**: se toma un periodo de referencia de 12 meses, de manera que se pueda observar un ciclo completo del funcionamiento del sistema de calefacción.

**Procedimiento de operación de los equipos**: el sistema de calefacción entrega el calor en forma de agua caliente y gestiona su marcha y paro en función de la temperatura del agua en el circuito.

**Problemas significativos durante el periodo de referencia**: no se han identificado.

**Referencia: periodo, energía y mediciones**

Identificación del periodo de referencia: se toma un periodo de referencia de 12 meses, de manera que se pueda observar un ciclo completo del funcionamiento del sistema de calefacción.

Es preciso indicar que para cada MMEE será necesario analizar cuál es el periodo de referencia adecuado, pudiendo llegar a ser una medición instantánea en determinados casos de iluminación.

**Datos de consumo de referencia**: se mide el consumo de energía de la caldera por medio del caudal de combustible consumido.

**Período demostrativo de ahorros**: Se toma un periodo demostrativo de ahorro de 12 meses, de manera que se pueda observar un ciclo completo del funcionamiento del sistema de calefacción.

**Energía, kg pero que no son medidos dentro del límite de medida.**
FASE III: IDENTIFICACIÓN Y CÁLCULO DE MMEE

Determinación del ahorro: tomando el enfoque de consumos evitados, se ha de calcular el consumo en línea base ajustado con la medición de demanda térmica durante el periodo demostrativo de ahorro y compararlo con el consumo energético en línea resultado.

Precios de la energía: se considera como precio de la energía a efectos del cálculo del ahorro, el precio promedio del combustible a lo largo del periodo demostrativo de ahorro.

Especificaciones de la medida

Medición del consumo de combustible: la medición del consumo de combustible se realizará por medio de contador analógico exclusivo para la caldera objeto de estudio.

Medición de la demanda térmica: la medición de la demanda térmica se realizará por medio de un contador de calor. Este instrumento mide simultáneamente caudal y la diferencia de temperatura entre la impulsión y el retorno del circuito de calefacción.

Responsabilidades de monitorización

El gestor energético será el encargado de asignar la responsabilidad de realizar las mediciones indicadas.

Precisión esperada

La máxima incertidumbre exigible a los equipos de medida es del 4%.

Presupuesto

Se considera que la ejecución del Plan de M&V no exige contar con recursos externos. Los trabajos necesarios se incorporan a las tareas del equipo de mantenimiento y del gestor energético.

Formato del informe

El informe de cálculo de ahorro de tener al menos los siguientes contenidos:

- Periodo demostrativo (línea resultado).
  - Inicio.
  - Fin.
- Medición de consumo de combustible.
- Medición de demanda térmica.
- Ajuste del periodo de referencia (línea base).
- Precio de la energía.
- Ahorro calculado.
  - Ahorro energético.
  - Ahorro económico.

Garantía de la calidad

El informe de ahorro será revisado y validado por al menos un profesional diferente al responsable de elaborarlo.

RESULTADOS CONSEGUIDOS

- MMEE identificadas y calculadas.
- Plan de M&V de las MMEE.
- Informe demostrativo de ahorro.

5.8 Referencias

- Documento “Sistemas eficientes de climatización y uso de energías renovables” publicada en la Fundación de la Energía de la Comunidad de Madrid.
- Guía básica de calderas de condensación (Fundación de la Energía de la Comunidad de Madrid).
- Guía básica de calderas de condensación (Fundación de la Energía de la Comunidad de Madrid).
- Guía de Eficiencia Energética para establecimientos de Salud (Agencia Chilena de Eficiencia Energética).
- Guía práctica sobre instalaciones individuales de calefacción y Agua Caliente Sanitaria (ACS) (Instituto para la Diversificación y Ahorro de la Energía, IDAE).

Agencia Chilena de Eficiencia Energética
Gestión de la energía y mejora continua

La gestión de la energía consiste en adoptar una serie de acciones para el seguimiento y control de los consumos con el fin de la mejora continua. La implementación de medidas de gestión de la energía es aplicable a una IES que quiera conseguir una reducción y optimización de sus consumos.
6. Gestión de la energía y mejora continua

**OBJETIVO**

Implementar nuevas oportunidades de mejora, relacionadas con la gestión de la energía, definiendo los indicadores más adecuados para el seguimiento de los consumos energéticos.

También se presentarán los beneficios de un Sistema de Gestión de la Energía (SGE) según la norma ISO 50001 y cómo un diagnóstico energético puede ser empleado como punto de partida en la implementación de un SGE.

### 6.1 Indicadores de seguimiento energético

Como parte de una correcta gestión de la energía, es necesario realizar un seguimiento periódico de los consumos energéticos de las instalaciones. Este seguimiento puede realizarse en base a diferentes indicadores energéticos que caractericen el consumo de energía de una determinada organización.

El disponer de indicadores energéticos permite realizar comparaciones a lo largo del tiempo o con valores de sistemas e instalaciones análogas.

Cada IES debe establecer los indicadores para realizar el seguimiento de su desempeño energético, en función de sus características y naturaleza. Asimismo, deberá actualizarlos cuando se produzcan cambios en las actividades que puedan afectar al seguimiento de los mismos.

Entre los indicadores energéticos más habituales se encuentran:

- Consumo de energía por unidad temporal (año, mes, día, etc.).
- Consumo de energía por superficie construida, calefaccionada, refrigerada, iluminada, etc.
- Consumo de energía por porcentaje de ocupación.
- Consumo de energía en base a parámetros climatológicos (temperatura, humedad, pluviosidad…).

### 6.2 Sistemas de Gestión de la Energía (SGE) según la norma ISO 50001

En la tabla a continuación se definen algunos indicadores energéticos que pueden ser de utilidad en las IES:

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo mensual de energía eléctrica por instalación e institución.</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>Consumo anual de energía eléctrica por instalación e institución.</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>Consumo mensual de petróleo por instalación e institución.</td>
<td>Lt/m²</td>
</tr>
<tr>
<td>Consumo anual de petróleo por instalación e institución.</td>
<td>Lt/m²</td>
</tr>
<tr>
<td>Consumo mensual de gas por instalación e institución.</td>
<td>m³/m²</td>
</tr>
<tr>
<td>Consumo anual de gas por instalación e institución.</td>
<td>m³/m²</td>
</tr>
</tbody>
</table>

Tabla 30. Indicadores de desempeño energético.

Un sistema de gestión está basado en el principio de mejora continua, que debe regir cualquier sistema de gestión sea cual sea su objeto (medioambiente, calidad, energía) asimismo en el ciclo de mejoramiento continuo PDCA (Plan, Do, Check, Act = planificar, hacer, verificar, actuar). Además, es compatible con otros sistemas de gestión que las organizaciones dispongan.

**Sistema de Gestión de la Energía**

Cuadro 25. Ciclo de mejoramiento continuo del sistema de gestión de la energía.

Fuente: Guía de Implementación Sistema de Gestión de la Energía basado en la ISO 50001.
6.2.1 Beneficios de la implementación de un SGE

La norma ISO 50001 puede ser utilizada por los establecimientos educacionales como una herramienta de ayuda para obtener mejoras significativas en su eficiencia energética.

Esta norma no establece requisitos absolutos para el desempeño energético (fuera de los incluidos en la política energética, el cumplimiento de los requisitos legales y la mejora continua), lo cual posibilita su implementación en cualquier tipo de organización, independiente de su tamaño, sector y ubicación.

Permite ahorrar costos mejorando la competitividad de las IES y disminuyendo el consumo de energía primaria y, por tanto, las emisiones de CO₂ a la atmósfera.

A continuación se indican los principales beneficios económicos y ambientales de la implementación de un SGE de acuerdo a lo establecido en la norma ISO 50001.

**Beneficios económicos**

Uno de los beneficios más palpables de la implementación de un SGE es la reducción de costos, asociada a la reducción de consumo energético.

Un SGE permite mantener niveles de consumo estables en el tiempo gracias a una adecuada gestión del uso de la energía.

En la gráfica que se muestra a continuación se puede ver la reducción de los costos asociados al consumo de energía relacionados con el tiempo y las diferentes medidas de eficiencia energética.

**Beneficios ambientales**

La reducción del consumo energético también conlleva beneficios de carácter ambiental, al disminuir las emisiones de Gases de Efecto Invernadero (GEI) derivadas del consumo de diferentes fuentes. Esta reducción será directamente proporcional a la reducción del consumo, de manera que a mayor ahorro energético obtenido más emisiones de GEI evitadas.

A continuación se describe la metodología de implementación de un SGE.

6.2.2 Metodología de implementación de un SGE

A continuación se describen los requerimientos de un SGE según lo descrito en la “Guía de Implementación de Sistema de Gestión de la Energía basada en la ISO 50001” de la Agencia Chilena de Eficiencia Energética (ACENEE) publicada en su versión inicial en 2011 y revisada en 2012.

Esta metodología se basa en 4 pasos:

- **Análisis de brechas**
  - La realización de un análisis de brechas es una tarea indispensable para conocer en qué medida la gestión energética actual de la organización se adecua a los requisitos establecidos por la norma ISO 50001. De este modo, resulta posible identificar los elementos que la organización ya haya desarrollado y que son más factibles de integrar en el SGE, así como aquellos que deberán ser elaborados. Los análisis de brechas permiten, por tanto, estimar los esfuerzos específicos que requiere la implementación en la organización.

- **Compromiso de la alta gerencia**
  - El compromiso de la Alta Gerencia es un aspecto fundamental en la implementación de un SGE, debiendo asegurar la disponibilidad de los recursos necesarios para la implementación y la mejora del desempeño energético.

- **Requerimientos medulares**
  - Los elementos medulares son aquellos asociados al área operacional de una organización, representando la médula del SGE. De este modo, el objetivo de esta etapa de la implementación consiste en comprender el contexto energético de la compañía para identificar cuáles son las variables que afectan al uso, consumo y desempeño energético, con el fin de poder enfocar en ellas los esfuerzos de mejora.

- **Requerimientos estructurales**
  - Los requerimientos estructurales son aquellos que dan a la gestión energética una connotación sistémica. Estos requerimientos garantizarán el adecuado funcionamiento de los elementos medulares y de la alta gerencia.
cumplimiento de sus compromisos y el seguimiento de todas las actividades relacionadas con el uso y consumo de la energía, así como con el desempeño energético.

**CONSEJO**
Para conocer más detalles sobre la ISO 50001, obtener ejemplos de documentación de un SGE y descubrir casos de éxito, visite: http://guiaiso50001.cl/

Requerimientos de la norma ISO 50001
Según el ciclo de mejoramiento continuo que propone la ISO a través de sus estándares, se presentan a continuación los requerimientos de la norma ISO 50001 que, de acuerdo a la metodología de la AChEE, se clasifican en:

Requerimientos Medulares, que corresponden a los procedimientos esenciales para observar y mejorar el desempeño energético.

Requerimientos Estructurales, como su nombre lo indica, son aquellos que proveen la estructura en torno a los requerimientos medulares y que convierten la gestión de la energía en un proceso sistemático y controlado.

El diagnóstico energético como punto de partida para la implementación de requerimientos medulares
Los requerimientos medulares se enfocan en la gestión misma de la energía. Permiten comprender el contexto energético de la organización para identificar las áreas de uso y consumo significativo y enfocar en ellas las oportunidades de mejora del desempeño energético.

Uno de los requerimientos medulares clave en la implementación de un SGE es el de revisión energética, etapa fundamental en el proceso de planificación energética, al inicio de un SGE.

El objetivo final de esta revisión es conocer todos los detalles acerca del uso y consumo de la energía, es decir: cómo, quién, dónde, por qué, se usa la energía en las instalaciones de la organización.

El proceso de revisión energética puede realizarse mediante un diagnóstico energético, ya que permite:

- Obtener un conocimiento fiable del consumo energético y su costo asociado
- Identificar y caracterizar las variables que afectan al consumo de energía
- Detectar y evaluar las distintas oportunidades de ahorro y mejora de la eficiencia energética y su repercusión en costo energético y otros asociados

Por tanto, la realización de un diagnóstico energético de las instalaciones puede ser el punto de partida para la implementación de un SGE.

6.3 Referencias
- Guía de Implementación de Sistema de Gestión de la Energía basada en la ISO 50001. (Agencia Chilena de Eficiencia Energética, AChEE).

RESULTADOS CONSEGUIDOS
- Indicadores de desempeño energético definidos
- Primera aproximación a la gestión de la energía según ISO 50001.
7 Anexos
7. Anexos

7.1 Anexo I: Fichas de levantamiento de datos

ILUMINACIÓN

Ejemplo de ficha de levantamiento de datos de iluminación

<table>
<thead>
<tr>
<th>Recinto</th>
<th>Tipo de ampolleta</th>
<th>Potencia (W)</th>
<th>Número de grupos</th>
<th>Número de ampolleta por grupo</th>
<th>Potencia del equipo auxiliar (W)</th>
<th>Potencia total (W)</th>
<th>Existencia detectores de presencia</th>
<th>Horas al día</th>
<th>Días al año</th>
</tr>
</thead>
</table>

Tabla 31. Ficha de levantamiento de datos de iluminación.

CLIMATIZACIÓN

Tabla 32. Ficha de levantamiento de datos de una caldera

<table>
<thead>
<tr>
<th>Ficha levantamiento de datos de una caldera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designación</td>
</tr>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Recinto</td>
</tr>
<tr>
<td>Nº Unidades</td>
</tr>
<tr>
<td>Marca</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>Potencia térmica nominal kW</td>
</tr>
<tr>
<td>Rendimiento nominal (%)</td>
</tr>
<tr>
<td>Rendimiento real medido (%)</td>
</tr>
<tr>
<td>Tipo de regulación del quemador</td>
</tr>
<tr>
<td>Año de instalación</td>
</tr>
<tr>
<td>Servicio</td>
</tr>
<tr>
<td>Horario de operación</td>
</tr>
<tr>
<td>Período de calefacción</td>
</tr>
</tbody>
</table>

Tabla 32. Ficha de levantamiento de datos de una caldera.
### Ejemplo de ficha levantamiento de datos de un chiller

<table>
<thead>
<tr>
<th>Designación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td></td>
</tr>
<tr>
<td>Recinto</td>
<td></td>
</tr>
<tr>
<td>Nº Unidades</td>
<td></td>
</tr>
<tr>
<td>Marca</td>
<td></td>
</tr>
<tr>
<td>Potencia térmica nominal (kW)</td>
<td></td>
</tr>
<tr>
<td>Potencia eléctrica nominal (kW)</td>
<td></td>
</tr>
<tr>
<td>Rendimiento nominal REE</td>
<td></td>
</tr>
<tr>
<td>Año de instalación</td>
<td></td>
</tr>
<tr>
<td>Servicio</td>
<td></td>
</tr>
<tr>
<td>Horario de Operación</td>
<td></td>
</tr>
<tr>
<td>Periodo de refrigeración</td>
<td></td>
</tr>
</tbody>
</table>

### Ficha levantamiento de datos de una estufa

<table>
<thead>
<tr>
<th>Designación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td></td>
</tr>
<tr>
<td>Recinto</td>
<td></td>
</tr>
<tr>
<td>Nº Unidades</td>
<td></td>
</tr>
<tr>
<td>Marca</td>
<td></td>
</tr>
<tr>
<td>Área de calefacción máxima</td>
<td></td>
</tr>
<tr>
<td>Potencia (Kcal/h)</td>
<td></td>
</tr>
<tr>
<td>Tipo de combustible</td>
<td></td>
</tr>
<tr>
<td>Horas de uso anuales</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 33. Ficha de levantamiento de datos de una estufa

Tabla 34. Ficha de levantamiento de datos de un chiller
### ANEXOS

#### Ficha de levantamiento de datos de una UMA

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
<th>Recinto</th>
<th>Nº Unidades</th>
<th>Marca</th>
<th>Modelo/Tipo</th>
<th>Potencia térmica nominal (kW)</th>
<th>Refrigeración</th>
<th>Calefacción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Año de instalación</th>
<th>Servicio</th>
<th>Horas/Año de operación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Tabla 35. Ficha de levantamiento de datos de una UMA

#### Ficha de levantamiento de datos de una bomba de impulsión/retorno y recirculación

<table>
<thead>
<tr>
<th>Designación</th>
<th>Descripción</th>
<th>Recinto</th>
<th>Nº Unidades</th>
<th>Marca</th>
<th>Modelo/Tipo</th>
<th>Caudal (m³/h)</th>
<th>Altura max. (m)</th>
<th>Potencia del motor (kW)</th>
<th>Existencia de variador de frecuencia</th>
<th>Existencia de aislamiento en las tuberías de distribución</th>
<th>Horas/Año de operación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

##### Tabla 36. Ficha de levantamiento de datos de una Unidad Manejadora de Aire.
### Ejemplo de ficha de levantamiento de datos de elementos terminales

<table>
<thead>
<tr>
<th>Designación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td></td>
</tr>
<tr>
<td>Recinto</td>
<td></td>
</tr>
<tr>
<td>Marca</td>
<td></td>
</tr>
<tr>
<td>Nº Unidades</td>
<td></td>
</tr>
<tr>
<td>Potencia frigorífica (kW)</td>
<td></td>
</tr>
<tr>
<td>Potencia térmica (kW)</td>
<td></td>
</tr>
<tr>
<td>Horas de funcionamiento</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 37: Ficha de levantamiento de datos de los elementos terminales.

### PRODUCCIÓN DE AGUA CALIENTE SANITARIA (ACS)

#### Ficha de levantamiento de datos de la caldera de ACS

<table>
<thead>
<tr>
<th>Designación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td></td>
</tr>
<tr>
<td>Recinto</td>
<td></td>
</tr>
<tr>
<td>Marca</td>
<td></td>
</tr>
<tr>
<td>Nº Unidades</td>
<td></td>
</tr>
<tr>
<td>Modelo</td>
<td></td>
</tr>
<tr>
<td>Potencia térmica nominal kW</td>
<td></td>
</tr>
<tr>
<td>Rendimiento nominal (%)</td>
<td></td>
</tr>
<tr>
<td>Rendimiento real medido (%)</td>
<td></td>
</tr>
<tr>
<td>Tipo de regulación del quemador</td>
<td></td>
</tr>
<tr>
<td>Año de instalación</td>
<td></td>
</tr>
<tr>
<td>Servicio</td>
<td></td>
</tr>
<tr>
<td>Horario de operación</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 38: Ficha de levantamiento de datos de la caldera de Agua Caliente Sanitaria.
### Tabla 39: Ficha de levantamiento de datos del acumulador de ACS

| Designación | | |
| Descripción | | |
| Recinto | | |
| N° Unidades | | |
| Marca | | |
| Modelo | | |
| Potencia térmica nominal (kW) | | |
| Capacidad (litros) | | |
| Temperatura acumulación | | |
| Año de instalación | | |

### Tabla 40: Ficha de levantamiento de datos de computadores

| Designación | | |
| Recinto | | |
| Unidades | | |
| Potencia nominal (W) | | |
| Potencia en stand-by (W) | | |
| Horas/año de funcionamiento | | |

### Tabla 41: Ficha de levantamiento de datos de impresoras

| Designación | | |
| Recinto | | |
| Unidades | | |
| Potencia nominal (W) | | |
| Potencia en stand-by (W) | | |
| Horas/año de funcionamiento | | |

---

**ANEXOS**

---
## ANEXOS

### Tabla 42. Ficha de levantamiento de datos de otros equipos consumidores de energía.

<table>
<thead>
<tr>
<th>Descripción equipo</th>
<th>Recinto</th>
<th>Unidades</th>
<th>Potencia (W)</th>
<th>Horas de funcionamiento</th>
</tr>
</thead>
</table>

### ENVOLVENTE TÉRMICA

#### Ejemplo de ficha de levantamiento de datos de la envolvente térmica

- **Materialidad principal**
- **Aislamiento de muros**
- **Aislamiento de techo**
- **Aislamiento de pisos**
- **Número de puertas**
- **Materialidad de puertas**
- **Número de ventanas**
- **Materialidad de ventanas**
- **Ventanas**

### Tabla 43. Ficha de levantamiento de datos de envolvente térmica.
7.2 Anexo II:
Equpos de medición

Se describen a continuación cada uno de los equipos de levantamiento de datos con mayor detalle.

7.2.1 Analizador de redes

Suministra información sobre la evolución del consumo de electricidad y la potencia a lo largo del tiempo. Ofrece información sobre los horarios de funcionamiento reales, la existencia de consumos "vampiro", entre otros.

Será necesario saber si la red es trifásica (formado por tres corrientes alternas) o monofásica para indicarlo así en el aparato de medida si es que el equipo lo permite.

Se utiliza para obtener información extra sobre el consumo eléctrico, especialmente para saber más sobre el momento en el que éste tiene lugar, así como cuando se desea aislar el consumo de algún equipo o parte de la instalación del total. Por ejemplo: cuando exista una única conexión para varios edificios y se pretende aislar el consumo de uno de ellos; o se quiera aislar el de un equipo en concreto del resto de la instalación.

De forma habitual, el analizador de redes se instala en un tablero eléctrico, que puede ser el general del edificio o un tablero secundario, dependiendo si se quiere medir respectivamente el consumo total o el parcial.

El tiempo de medición se puede ajustar a la información que se desea conocer. Así, aunque el tiempo más habitual de medición suele ser una semana, se puede programar para hacer mediciones instantáneas o de periodos más extensos. La variación del consumo a lo largo del tiempo se expresa gráficamente a través de las curvas de consumo o curvas de carga.

A continuación se muestra un ejemplo de la curva del consumo eléctrico obtenido de la instalación de un analizador de redes en un edificio de oficinas en un día laboral:

![Consumo eléctrico en un día laboral](image)

Se aprecia en el gráfico un aumento importante del consumo desde las 07:00 horas, momento en el que abren las oficinas. Una hora después disminuye de una manera más progresiva hasta la hora del almuerzo, por la tarde se vuelve a ver otro liger aumento.

Resulta destacable el consumo base que se produce durante la noche. Parte del cuál es inevitable, debido al consumo de los servidores, sistemas de seguridad y otros equipos; y la otra parte, se podrá eliminar pues se trata de los consumos "vampiro" ocasionados por las pantallas encendidas o los aparatos en modo stand-by, entre otros.

7.2.2 Registrador de temperatura

Suministra información sobre la evolución de la temperatura en una sala a lo largo del tiempo. Se utiliza principalmente en aquellas instalaciones en las que la climatización tenga un peso importante respecto al consumo total, así como cuando se quiera saber el tiempo de funcionamiento y las condiciones de la climatización.

Por lo general, se selecciona la sala de donde se desea obtener la información y se sitúa cerca de donde vaya a estar el trabajador o alumno. El equipo debe situarse alejado de cualquier fuente de calor/frío.

El tiempo de medición es variable, por lo general de una semana, dependiendo del ciclo de operación que se requiera.

Se muestra a continuación un ejemplo de la evolución de la temperatura de una sala, obtenida con los datos recabados por un registrador de temperatura.

![Comparación entre temperatura interior y potencia de refrigeración](image)

En el gráfico anterior se compara la temperatura interior de una sala con la potencia de enfriamiento consumida para mantenerla. La curva de potencia de enfriamiento dibuja una doble curva, un claro indicador de que se trata de una instalación que no se utiliza en el horario del almuerzo. Además resulta relevante destacar que el máximo de potencia coincide con la reducción de temperatura en la sala.

7.2.3 Cámara termográfica

La cámara termográfica suministra información sobre la temperatura superficial de un cuerpo, lo que permite conocer si se produce un exceso de temperatura en algún elemento y dónde se están produciendo las mayores pérdidas de calor.

Se utiliza cuando se quiere obtener información detallada sobre las pérdidas de calor que se producen a través de una envolvente o en un determinado elemento de la instalación. Los resultados obtenidos son relevantes cuando existe una gran diferencia de temperaturas entre lo fotografiado y el ambiente circundante.

Se puede realizar una termografía a cualquier objeto cuya temperatura sea diferente de la del ambiente, tales como:

- Tableros eléctricos.
- Calderas.
- Tuberías de distribución.
- Puertas y ventanas.
- Bombas de calor.

Al tratarse de una fotografía, el tiempo de medición es instantáneo.

![Cámara termográfica](image)

Se muestra a continuación el ejemplo de una termografía realizada a las tuberías de una bomba de calor:
7.2.4 Analizador de gases

Suministra información sobre el rendimiento de la combustión de una caldera, así como las cantidades de distintos gases de escape de la misma (CO, CO₂, O₂ e incluso NOx, en algún caso).

Se usa cuando la caldera existente sea susceptible de ser cambiada, ya sea por antigüedad o porque requiera de un combustible que sea preferible sustituir. Para su utilización se necesita que la caldera esté funcionando y que exista un agujero en la chimenea por donde introducir la sonda de medida.

Por lo general, se puede realizar un análisis de gases a cualquier caldera, independiente del combustible que consume: gasóleo, gas licuado, gas natural, etc. El tiempo de medición es instantáneo.

Figura 32. Analizador de gases.

En la siguiente termografía, realizada a una cristalera con diferentes hojas de cristal unidas mediante silicona, se puede observar cómo la temperatura de las juntas es considerablemente inferior a la del ambiente (la de la parte inferior), por lo que las mayores pérdidas de calor se producen a través de dichas juntas.

Figura 31. Termografía a una cristalera.

A continuación se muestran los resultados obtenidos en un analizador de gases:

<table>
<thead>
<tr>
<th>Medición</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustible</td>
<td>Gas Natural</td>
</tr>
<tr>
<td>O₂ referencia</td>
<td>3.0 %</td>
</tr>
<tr>
<td>CO₂ máxima</td>
<td>11.9 %</td>
</tr>
<tr>
<td>Temperatura Gas combustión</td>
<td>203.4 °C</td>
</tr>
<tr>
<td>CO corregido</td>
<td>3 ppm</td>
</tr>
<tr>
<td>O₂</td>
<td>13.3 %</td>
</tr>
<tr>
<td>CO</td>
<td>1 ppm</td>
</tr>
<tr>
<td>Lambda (exceso de aire)</td>
<td>2.73</td>
</tr>
<tr>
<td>CO₂</td>
<td>4.36%</td>
</tr>
<tr>
<td>Tiro</td>
<td>---- mbar</td>
</tr>
<tr>
<td>Temperatura ambiente</td>
<td>32.9 °C</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>83.5 %</td>
</tr>
</tbody>
</table>

Tabla 44. Ejemplo de datos obtenidos con un analizador de gases de una caldera.

7.2.5 Registrador de ocupación

El registro de ocupación proporciona información sobre el tiempo que realmente ha estado ocupada una sala, y sobre los períodos en que la iluminación ha estado o no encendida. Se utiliza en lugares con salas donde la iluminación supone un consumo importante, aquellas que sean salas de paso, o que interese conocer su ocupación real.

Se coloca en un punto del recinto donde pueda captar la iluminación y el movimiento. Uno de los sensores se coloca enfocando hacia el foco de luz y el otro hacia el lugar de ocupación. El tiempo de medición es variable aunque, por lo general, suele tener una duración de una semana.

A continuación se muestra un ejemplo de una tabla con los datos de iluminación y ocupación por hora obtenidos por un registrador de ocupación:

<table>
<thead>
<tr>
<th>Hora</th>
<th>ON ocupado (%)</th>
<th>ON vacante (%)</th>
<th>ON total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 45. Ejemplo de datos obtenidos con un registrador de ocupación.

La segunda columna refleja el porcentaje de encendidos inútiles, es decir los momentos en que la iluminación de la sala se encontraba vacía, sin nadie en su interior.

A continuación se muestra el gráfico que se obtuvo con los datos obtenidos por un registrador de ocupación instalado en la sala de archivos de una universidad.
7.2.6 Termoflujómetro

El uso del termoflujómetro ayuda a determinar la transmision térmica de un muro. Mide el flujo de calor a través de un cerramiento a partir de las temperaturas de los ambientes interno y externo junto con la temperatura de la pared interna. Para medir estas temperaturas este equipo viene provisto de una sonda inalámbrica y otra sonda con cuatro sensores.

Para un resultado más adecuado se recomienda hacer esta medida en invierno cuando el centro educativo está siendo calefaccionado.

7.2.7 Luxómetro

El luxómetro suministra información sobre el nivel de iluminación de un recinto o una calle, permitiendo analizar su conformidad con los niveles de iluminación recomendados y/o necesarios. Permite detectar situaciones de sobreiluminación por la instalación de ampolletas con potencias superiores a las necesarias que elevan el consumo, así como también identificar sectores con iluminación bajo norma.

Las medidas de luxometría se realizarán en espacios de consumo permanente o vías tipo para hacer un muestreo de toda la instalación. En el caso de lugares de consumo permanente, se realizará en el punto de trabajo en cuestión y en el caso de alumbrados públicos se realizará a nivel de calle y siguiendo el método de los “nueve puntos”. El tiempo de medición es instantáneo.

7.2.8 Otros equipos de medición

Además, existen otros equipos que pueden proporcionar información:
- Pinzas amperimétricas: se emplean para medir la corriente eléctrica de un determinado equipo y determinar así su potencia.
- Metro: se emplean para medir distancias.
- Cámara fotográfica: para ilustrar con fotografías el resultado del diagnóstico.
- Grabadora: para un registro de datos más rápido.

7.3 Anexo III: Glosario

Balance energético: asignación de consumo de energía a equipos, sistemas, operaciones o cualquier otra división de la organización.

Burletes: material que se instala para evitar infiltraciones por las ventanas.

Célula fotovoltaica: dispositivo que, al detectar la luz natural, hace que la iluminación se mantenga apagada.

Consumo energético: el consumo energético de un sistema es igual a la potencia por el tiempo de utilización. En climatización, el consumo energético es igual al producto de la potencia, al tiempo de funcionamiento y al factor de carga de los equipos. El factor de carga en aquellos equipos que funcionan continuamente tiene como valor la unidad, sin embargo es menor en los equipos que están controlados por sensores (Tª, humedad, presión, etc.) y que funcionan discontinuamente con detenciones y activaciones repentinas.

Por otro lado, el consumo de climatización está relacionado con el rendimiento de los equipos de generación de calor y frío.

De este modo, algunas de las oportunidades de reducción de consumos en climatización estarán relacionadas con el aumento del rendimiento de los equipos o la disminución de la demanda de calefacción o refrigeración.

Consumo "vampiro": consumo de energía de los equipos cuando no están en funcionamiento, solo por estar enchufados.

Línea base: periodo de referencia en cuanto a consumos de energía y su costo y, si es posible, su relación con las variables que más influyen en los consumos, como el nivel de actividad, el número de usuarios, variables climatológicas y otras.

Los valores así definidos se deben emplear como referencia para el cálculo de los ahorros que se deriven de las mejoras propuestas.

Termopanel: sistema de dos o más vidrios herméticamente sellados.

Transmitancia térmica: energía que atraviesa los materiales que forman la envolvente.

Valvulas termostáticas: sirven para controlar la temperatuura que emiten los elementos terminales.

Variador de frecuencia: sistema que controla la velocidad de funcionamiento de un motor a través de la variación de frecuencia de la energía que alimenta al motor.